Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 12 năm 2019 - 2020 trường Đồng Đậu - Vĩnh Phúc

Ngày …/10/2019, trường THPT Đồng Đậu, tỉnh Vĩnh Phúc tổ chức kỳ thi chọn học sinh giỏi Toán 12 năm học 2019 – 2020, với mục đích tuyển chọn những em học sinh lớp 12 có thành tích học tập môn Toán xuất sắc, thành lập đội tuyển học sinh giỏi Toán 12 cấp trường, tham dự kỳ thi học sinh giỏi Toán 12 cấp tỉnh. Đề thi học sinh giỏi Toán 12 năm 2019 – 2020 trường Đồng Đậu – Vĩnh Phúc gồm 07 bài toán tự luận, đề thi gồm có 01 trang, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang chấm điểm. [ads] Trích dẫn đề thi học sinh giỏi Toán 12 năm 2019 – 2020 trường Đồng Đậu – Vĩnh Phúc : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD có phương trình đường chéo AC là x – y + 1 = 0, điểm G(1;4) là trọng tâm tam giác ABC, điểm E (0;-3) thuộc đường cao kẻ từ D của tam giác ACD. Tìm tọa độ các đỉnh của hình bình hành đã cho, biết rằng diện tích tứ giác AGCD bằng 32 và đỉnh A có tung độ dương. + Cho đa giác lồi (H) có n đỉnh (n ∈ N, n > 4). Biết số các tam giác có ba đỉnh là đỉnh của (H) và không có cạnh nào là cạnh của (H) gấp 5 lần số các tam giác có ba đỉnh là đỉnh của (H) và có đúng một cạnh là cạnh của (H). Xác định n. + Cho hàm số y = (mx – m + 2)/(x + 1) có đồ thị là (C). Tìm tất cả các giá trị của tham số m để đường thẳng d: y = 2x – 1 cắt (C) tại hai điểm phân biệt A, B sao cho góc giữa hai đường thẳng OA, OB bằng 45 độ.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Thái Bình
Nội dung Đề học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Thái Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán lớp 12 cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thái Bình; đề thi mã đề 357 được biên soạn theo cấu trúc 100% trắc nghiệm, đề gồm 06 trang với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút. Trích dẫn Đề học sinh giỏi Toán lớp 12 cấp tỉnh năm 2022 – 2023 sở GD&ĐT Thái Bình : + Cho hàm số f(x) và g(x) (với m là tham số). Số giá trị nguyên của tham số m để đồ thị hai hàm số y = f(x) và y = g(x) cắt nhau tại đúng hai điểm phân biệt có hoành độ thuộc khoảng (0;10) là? + Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và D, SA vuông góc với mặt đáy (ABCD); AB = 2a, AD = CD = a. Góc giữa mặt phẳng (SBC) và mặt đáy (ABCD) là 60°. Mặt phẳng (P) đi qua CD và trọng tâm G của tam giác SAB cắt các cạnh SA, SB lần lượt tại M, N. Thể tích V của khối chóp S.CDMN theo a là? + Cho hàm số f(x) = x3 − 3×2 + 2 có đồ thị (C). Gọi M, N là hai điểm phân biệt trên (C) sao cho hai tiếp tuyến tại M và N song song với nhau và đường thẳng MN cắt trục hoành, trục tung lần lượt tại A, B khác gốc tọa độ O sao cho AB = 10. Khi đó tiếp tuyến của đồ thị (C) tại M hoặc N có hệ số góc là?
Đề học sinh giỏi thành phố Toán THPT năm 2022 2023 sở GD ĐT Hải Phòng
Nội dung Đề học sinh giỏi thành phố Toán THPT năm 2022 2023 sở GD ĐT Hải Phòng Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi thành phố môn Toán cấp THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hải Phòng; đề thi gồm 02 trang với 08 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào thứ Năm ngày 08 tháng 12 năm 2022. Trích dẫn Đề học sinh giỏi thành phố Toán THPT năm 2022 – 2023 sở GD&ĐT Hải Phòng : + Gọi A là tập hợp tất cả các số tự nhiên có 5 chữ số. Chọn ngẫu nhiên một số từ tập hợp A. Tính xác suất để chọn được một số chia hết cho 7 và chữ số hàng đơn vị bằng 1. + Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 4a. Biết hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABCD) là điểm M thỏa mãn AD = 3MD. Trên cạnh CD lấy các điểm I, N sao cho ABM = MBI và MN vuông góc BI. Biết góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 60°. a) Tính thể tích của khối chóp S.AMCB theo a. b) Tính khoảng cách từ điểm N đến mặt phẳng (SBC) theo a. + Trong mặt phẳng tọa độ (Oxy), cho hình thang ABCD có góc BAD = ADC = 90°, D(2;2) và CD = 2AB. Gọi H là hình chiếu vuông góc của điểm D trên đường thẳng AC. Điểm M là trung điểm của đoạn HC. Tìm tọa độ các điểm A, B và C biết rằng đỉnh B thuộc đường thẳng d có phương trình x − 2y + 4 = 0. + Cho ba số thực dương x, y, z thỏa mãn 5(x2 + y2 + z2) = 9(xy + 2yz + zx). Tìm giá trị lớn nhất của biểu thức P.
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 2023 sở GD ĐT Khánh Hòa
Nội dung Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 2023 sở GD ĐT Khánh Hòa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Khánh Hòa; kỳ thi được diễn ra vào ngày 07 tháng 12 năm 2022. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 – 2023 sở GD&ĐT Khánh Hòa : + Cho hàm số y = x4 – 2(m + 1)x2 + 2m + 1 có đồ thị (C). a) Với m = 1, tính diện tích của tam giác có 3 đỉnh là 3 điểm cực trị của đồ thị (C). b) Tìm tất cả các giá trị dương của tham số m để đồ thị (Cm) cắt trục hoành tại bốn điểm phân biệt và tiếp tuyến của (Cm) tại giao điểm có hoành độ lớn nhất hợp với hai trục tọa độ một tam giác có diện tích bằng 24. + Bạn An chọn ngẫu nhiên 3 quả cầu từ hộp gồm 19 quả cầu được đánh số thứ tự từ 1 đến 19. Hỏi có bao nhiêu cách chọn sao cho các số thứ tự ghi trên 3 quả cầu có tổng chia hết cho 4. + Biết rằng với mỗi n thuộc N*, luôn tồn tại duy nhất hai số nguyên dương an, bn sao cho. Chứng minh là số chính phương.
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 2023 sở GD ĐT Quảng Ninh
Nội dung Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 2023 sở GD ĐT Quảng Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Quảng Ninh; đề thi gồm 01 trang với 06 bài toán dạng tự luận, thang điểm 20, thời gian làm bài 180 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào sáng thứ Sáu ngày 02 tháng 12 năm 2022. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 – 2023 sở GD&ĐT Quảng Ninh : + Cho tam giác đều ABC. Trên mỗi cạnh AB, BC, CA lần lượt lấy 4 điểm phân biệt và không điểm nào trùng với các đỉnh A, B, C. Hỏi lập được bao nhiêu tam giác mà các đỉnh của nó thuộc tập hợp 15 điểm đã cho (tính cả các điểm A, B, C)? + Một người chọn ngẫu nhiên một số điện thoại, trong đó mỗi số có mười chữ số và ba chữ số đầu cố định là 099. Số điện thoại này được gọi là may mắn nếu bốn chữ số tiếp theo là các chữ số chẵn đôi một khác nhau, ba chữ số cuối là các số lẻ và tổng ba chữ số này bằng 9. Tính xác suất để người đó nhận được số điện thoại may mắn. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB 3 BC 6 đường thẳng SA vuông góc với mặt phẳng ABCD. Điểm M thuộc đoạn BC sao cho 1 3 BM BC. Góc giữa đường thẳng SC và mặt phẳng SAB bằng 45°. a) Tính thể tích khối chóp S.ABCD. b) Tính khoảng cách giữa hai đường thẳng SM và AC. c) Gọi H và K lần lượt là hình chiếu vuông góc của A trên SM và SC. Chứng minh hình chóp A.CMHK nội tiếp một mặt cầu. Tính bán kính mặt cầu đó.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6