Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán năm 2022 - 2023 trường THPT chuyên Hà Tĩnh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2022 – 2023 trường THPT chuyên Hà Tĩnh; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 – 2023 trường THPT chuyên Hà Tĩnh : + Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm phân biệt A và B. Trên tia đối của tia AB lấy điểm M, kẻ các tiếp tuyến ME, MF với đường tròn (O’), trong đó E và F thuộc đường tròn (O’), F nằm trong đường tròn (O). Hai đường thẳng AE và AF cắt đường tròn (O) lần lượt tại P và Q (P và Q khác A). Tia EF cắt PQ tại K. a) Chứng minh tam giác BKP đồng dạng với tam giác BFA. b) Gọi I và J lần lượt là giao điểm của AB với OO’ và EF. Chứng minh IJE = IFM. c) Chứng minh PQ = 2OA2 – OK2. + Cho các số thực dương a b c thỏa mãn a + b + c = 3abc. Tìm giá trị lớn nhất của biểu thức P. + Lớp 9A có 34 học sinh, các học sinh lớp này đều tham gia một số câu lạc bộ của trường. Mỗi học sinh của lớp tham gia đúng một câu lạc bộ. Nếu chọn ra 10 học sinh bất kì của lớp này thì luôn có ít nhất 3 học sinh tham gia cùng một câu lạc bộ. Chứng minh rằng có một câu lạc bộ gồm ít nhất 9 học sinh lớp 9A tham gia.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề minh họa Toán tuyển sinh năm 2019 2020 sở GD ĐT Khánh Hòa
Nội dung Đề minh họa Toán tuyển sinh năm 2019 2020 sở GD ĐT Khánh Hòa Bản PDF - Nội dung bài viết Đề minh họa Toán tuyển sinh năm 2019 - 2020 sở GD ĐT Khánh Hòa Đề minh họa Toán tuyển sinh năm 2019 - 2020 sở GD ĐT Khánh Hòa Vừa qua, sở Giáo dục và Đào tạo tỉnh Khánh Hòa đã công bố đề minh họa kỳ thi tuyển sinh vào lớp 10 năm học 2019 - 2020 môn Toán. Đề được biên soạn theo cấu trúc tương tự như các năm trước, bao gồm 01 trang với 05 bài toán tự luận, học sinh sẽ làm bài trong thời gian 120 phút. Trích dẫn đề minh họa Toán tuyển sinh lớp 10 năm 2019 - 2020 sở GD&ĐT Khánh Hòa: Trên mặt phẳng tọa độ Oxy, cho điểm A(3;-2) và đường thẳng d có phương trình y = x - m với m là tham số. Tìm m để điểm N thuộc đường thẳng d. Với m tìm được, xác định tọa độ giao điểm của đường thẳng d và parabol (P) có phương trình y = -4x^2. Cho AB và CD là hai đường kính khác nhau của đường tròn (O;R). Đường thẳng vuông góc với AB tại A cắt các đường thẳng BC, BD lần lượt tại E và F. Chứng minh góc BAD = BFA. Chứng minh tứ giác CDEF là tứ giác nội tiếp. Gọi I, J lần lượt là trung điểm của các đoạn thẳng AE, AF và H là trực tâm của tam giác BIJ. Tính độ dài đoạn thẳng AH theo R. Đề minh họa Toán tuyển sinh của sở GD ĐT Khánh Hòa năm 2019 - 2020 đặt ra những bài toán đa dạng về các khái niệm và phương pháp giải, giúp học sinh rèn luyện kỹ năng tư duy logic, sáng tạo và khả năng giải quyết vấn đề. Hãy cùng nhau học tập và chuẩn bị tốt nhất cho kỳ thi sắp tới!
Đề Toán tuyển sinh vào 10 chuyên năm 2019 2020 sở GD ĐT Hưng Yên
Nội dung Đề Toán tuyển sinh vào 10 chuyên năm 2019 2020 sở GD ĐT Hưng Yên Bản PDF - Nội dung bài viết Đề Toán tuyển sinh vào 10 chuyên năm 2019-2020 sở GD&ĐT Hưng Yên Đề Toán tuyển sinh vào 10 chuyên năm 2019-2020 sở GD&ĐT Hưng Yên Để chọn ra các học sinh xuất sắc nhất vào các trường THPT chuyên tại tỉnh Hưng Yên, sở Giáo dục và Đào tạo đã tổ chức kỳ thi Toán tuyển sinh vào lớp 10 THPT chuyên cho năm học 2019-2020. Đề Toán tuyển sinh này được sử dụng cho thí sinh đăng ký vào các lớp chuyên Toán và chuyên Tin, bao gồm 1 trang với 5 bài toán tự luận. Thời gian làm bài là 150 phút (không tính thời gian phát đề). Một trong những bài toán của đề là: - Trong mặt phẳng toạ độ Oxy có đường thẳng (d) và parabol y = 2x^2. Biết đường thẳng (d) cắt parabol tại hai điểm B và C. Cần tìm tọa độ điểm A trên trục hoành để khoảng cách |AB - AC| lớn nhất. - Cho hình vuông ABCD tâm O, cạnh a. Xác định các điểm và tính toán để chứng minh MK song song với BD, tính tỉ lệ FO/FC và tìm giá trị nhỏ nhất của diện tích tứ giác CPQD khi M thay đổi trên cạnh AB. Kỳ thi này không chỉ đánh giá năng lực của thí sinh mà còn giúp chuẩn bị cho họ vào học tập tại các trường chuyên hàng đầu của tỉnh Hưng Yên. Đề Toán tuyển sinh vào lớp 10 chuyên năm 2019-2020 sở GD&ĐT Hưng Yên chắc chắn sẽ là thách thức lớn đối với các thí sinh tham gia.
Đề Toán tuyển sinh năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung)
Nội dung Đề Toán tuyển sinh năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung) Đề Toán tuyển sinh năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung) Vào ngày thứ Ba, ngày 28 tháng 05 năm 2019, trường Trung học Phổ thông chuyên Đại học Sư phạm Hà Nội đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán dành cho năm học 2019 - 2020. Mục tiêu của kỳ thi là tuyển chọn những học sinh đạt yêu cầu về kiến thức, để chuẩn bị cho một năm học mới đầy hứng khởi. Đề Toán tuyển sinh lớp 10 năm 2019 của trường chuyên Đại học Sư phạm Hà Nội (đề chung) được sử dụng cho tất cả thí sinh dự thi vào trường. Đề thi bao gồm 1 trang với 5 bài toán, thí sinh phải hoàn thành bài thi trong thời gian 120 phút. Chi tiết đề Toán tuyển sinh lớp 10 năm 2019 của trường chuyên ĐHSP Hà Nội (Đề chung) bao gồm: Trên quãng đường AB có độ dài 20km, bạn An và bạn Bình đi bộ từ 2 hướng khác nhau. Sau 2 giờ, họ gặp nhau tại C và nghỉ 15 phút. Sau đó, họ tiếp tục hành trình với vận tốc khác nhau và An đến B sớm hơn Bình đến A 48 phút. Yêu cầu: Tính vận tốc của An trên đoạn AC. Cho đường tròn (O) ngoại tiếp tam giác ABC. Xác định điểm A’ và C’ trên đường tròn sao cho A1C1 cắt đường tròn (O) tại A’ và C’ (với A1 nằm giữa A’ và C1). Tìm mối quan hệ giữa HC1, A1C và A1C1, chứng minh ba điểm B, B’, O thẳng hàng, và tính A’C’ khi tam giác ABC là tam giác đều. Xác định hệ số của đa thức P(x) và Q(x) để thỏa mãn các điều kiện cần đưa ra. Đề Toán tuyển sinh lớp 10 năm 2019 của trường chuyên ĐHSP Hà Nội (Đề chung) không chỉ đánh giá kiến thức của thí sinh mà còn đặt ra những bài toán thú vị, đòi hỏi sự tư duy logic và khả năng giải quyết vấn đề của học sinh. Hy vọng rằng các thí sinh sẽ có được một kỳ thi tuyển sinh thành công và đạt kết quả tốt nhất.
Đề Toán tuyển sinh năm 2019 trường PTNK TP HCM (Vòng 2)
Nội dung Đề Toán tuyển sinh năm 2019 trường PTNK TP HCM (Vòng 2) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh lớp 10 năm 2019 trường PTNK TP HCM (Vòng 2) Đề Toán tuyển sinh lớp 10 năm 2019 trường PTNK TP HCM (Vòng 2) Sytu xin được giới thiệu đến quý thầy cô giáo và các em học sinh đề Toán tuyển sinh lớp 10 năm 2019 trường PTNK TP HCM (Vòng 2). Đề này dành cho các thí sinh dự thi vào các lớp chuyên Toán. Đề Toán tuyển sinh lớp 10 năm 2019 trường PTNK TP HCM (Vòng 2) gồm 5 bài toán, thời gian làm bài là 150 phút (không tính thời gian giám thị coi thi phát đề). Trích dẫn đề Toán tuyển sinh lớp 10 năm 2019 trường PTNK TP HCM (Vòng 2): Trong một buổi gặp gỡ giao lưu giữa các học sinh đến từ n quốc gia, cứ 10 học sinh bất kỳ sẽ có ít nhất 3 học sinh đến từ cùng một quốc gia. a) Gọi k là số các quốc gia có đúng 1 học sinh tham dự buổi gặp gỡ. Chứng minh rằng n < (k + 10)/2. b) Biết rằng số các học sinh tham dự buổi gặp gỡ là 60. Chứng minh rằng có thể tìm được ít nhất là 15 học sinh đến từ cùng một quốc gia. Cho n là số tự nhiên, n > 3. Chứng minh rằng 2^n + 1 không chia hết cho 2^m - 1 với mọi số tự nhiên m sao cho 2 < m ≤ n. Tìm tất cả những số tự nhiên n sao cho 2^n + 1 chia hết cho 9.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6