Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa học kỳ 2 Toán 9 năm 2022 - 2023 trường THCS Thái Thịnh - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2022 – 2023 trường THCS Thái Thịnh, thành phố Hà Nội; đề thi hình thức tự luận với 05 bài toán, thời gian làm bài 90 phút, đề kiểm tra gồm 01 trang; đề có đáp án và lời giải chi tiết. Trích dẫn Đề giữa học kỳ 2 Toán 9 năm 2022 – 2023 trường THCS Thái Thịnh – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch hai tổ sản xuất 600 sản phẩm trong một thời gian nhất định. Do áp dụng kỹ thuật mới nên tổ I đã vượt mức 18% và tổ II vượt mức 21%, vì vậy trong thời gian quy định họ đã hoàn thành vượt mức 120 sản phẩm. Hỏi số sản phẩm được giao của mỗi tổ theo kế hoạch? + Trong mặt phẳng tọa độ Oxy cho Parabol (P): 2 y x và đường thẳng (d): y x 2 3 a. Tìm tọa độ các giao điểm của (d) và (P). b. Gọi A, B là giao điểm của (d) và (P). Tính diện tích tam giác OAB. + Cho (O;R) đường kính AB. C là một điểm bất kỳ thuộc cung AB (AC < CB). Từ C kẻ CH vuông góc với AB H AB. Lấy điểm F thuộc cung nhỏ AC; BF cắt CH tại E; Tia AF cắt tia HC tại I. 1) Chứng minh rằng tứ giác AHEF là tứ giác nội tiếp. 2) Chứng minh rằng: AF.AI = AH.AB 3) Cho BI cắt (O) tại K. Chứng minh rằng A, E, K thẳng hàng.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề giữa học kì 2 Toán 9 năm 2021 - 2022 trường Lương Thế Vinh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2021 – 2022 trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội. Trích dẫn đề giữa học kì 2 Toán 9 năm 2021 – 2022 trường Lương Thế Vinh – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Để chuẩn bị cho buổi ôn tập giải toán bằng cách lập phương trình của lớp 9A, tổ 1 và tổ 2 được giao chuẩn bị bài tập về dạng toán chuyển động. Biết rằng nếu cả hai tổ cùng làm thì sau 3 giờ 36 phút giờ sẽ xong, còn nếu tổ 1 làm trong 2 giờ, tổ 2 làm trong 3 giờ thì được công việc. Hỏi nếu mỗi tổ làm một mình thì bao lâu xong công việc? + Cho phương trình x2 – 2(m – 3)x + 4m – 16 = 0 (m là tham số) a) Tìm m để phương trình có nghiệm x = 3. Giải phương trình với giá trị m vừa tìm được. b) Chứng minh rằng phương trình luôn có nghiệm với mọi m. c) Tìm m để phương trình có ít nhất một nghiệm âm. + Cho đường tròn (O;R) đường kính AB và điểm I cố định nằm giữa A và O. Dây CD vuông góc với AB tại I. Gọi E là điểm tùy ý thuộc dây CD (E không trùng với C, D). Tia AE cắt (O) tại F. a) Chứng minh tứ giác BIEF nội tiếp. b) Chứng minh: AC2 = AI.AB = AE.AF. c) Kẻ đường kính CM của (O); kẻ dây DN vuông góc với FM. Chứng minh CN = DF. d) Gọi giao điểm của CN và DF là K. Chứng minh rằng giao điểm của OK với BC là tâm đường tròn ngoại tiếp tam giác CEF.
Đề kiểm tra giữa học kì 2 Toán 9 năm 2021 - 2022 trường THCS Cát Linh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2021 – 2022 trường THCS Cát Linh, quận Đống Đa, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 11 tháng 03 năm 2022. Trích dẫn đề kiểm tra giữa học kì 2 Toán 9 năm 2021 – 2022 trường THCS Cát Linh – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Hai vòi nước cùng chảy vào một bể cạn trong 18 giờ thì đầy bể. Nếu vòi 1 chảy trong 4 giờ, vòi 2 chảy trong 7 giờ thì chỉ được 1/3 bể. Hỏi nếu mỗi vòi chảy một mình thì trong bao lâu sẽ đầy bể? + Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AM, AN tới đường tròn (M, N là các tiếp điểm). 1) Chứng minh tứ giác AMON nội tiếp. 2) Trên cung nhỏ MN lấy điểm B khác M, N và B không là điểm chính giữa của cung MN. Tia AB cắt đường tròn (O) tại điểm thứ hai C. Chứng minh: AM2 = AB.AC. 3) Gọi H là giao điểm của AO và MN. Chứng minh: AHB = ACO. + Cho ba số thực không âm a b c và a + b + c = 3. Tìm giá trị lớn nhất của biểu thức K.
Đề kiểm tra giữa học kỳ 2 Toán 9 năm 2021 - 2022 trường THCS Giảng Võ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2021 – 2022 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào sáng thứ Sáu ngày 11 tháng 03 năm 2022. Trích dẫn đề kiểm tra giữa học kỳ 2 Toán 9 năm 2021 – 2022 trường THCS Giảng Võ – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Một khu vườn hình chữ nhật có chu vi là 240 m. Người ta dự định mở rộng khu vườn bằng cách tăng chiều dài thêm 9 m, tăng chiều rộng thêm 7 m, sao cho khu vườn vẫn là hình chữ nhật, do vậy diện tích khu vườn sẽ tăng thêm 2 963 m. Tính chiều dài và chiều rộng của khu vườn ban đầu. + Cho đường tròn O và điểm K nằm bên ngoài đường tròn O. Kẻ hai tiếp tuyến KA KB với đường tròn O, A và B là các tiếp điểm. Từ điểm K vẽ đường thẳng d cắt đường tròn O tại hai điểm C D KC KD (d không đi qua tâm O). 1) Chứng minh tứ giác KAOB là tứ giác nội tiếp. 2) Gọi giao điểm của đoạn thẳng AB với đoạn thẳng OK là M. Chứng minh 2 KA KC KD KM KO. 3) Chứng minh đường thẳng AB chứa tia phân giác của CMD. + Cho phương trình: 2 2 x m x m m 2 1 3 0 1 (x là ẩn số). a) Giải phương trình 1 khi m 5. b) Tìm tất cả giá trị của m để phương trình 1 có hai nghiệm.
Đề kiểm tra giữa học kỳ 2 Toán 9 năm 2021 - 2022 trường Thực Nghiệm KHGD - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 Toán 9 năm  học 2021 – 2022 trường Thực Nghiệm Khoa Học Giáo Dục, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Tư ngày 09 tháng 03 năm 2022; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề kiểm tra giữa học kỳ 2 Toán 9 năm 2021 – 2022 trường Thực Nghiệm KHGD – Hà Nội : + Sân bóng rổ của trường học là một hình chữ nhật có chiều dài hơn chiều rộng 9m. Nếu tăng chiều dài thêm 2m và tăng chiều rộng 1m thì diện tích của sân tăng thêm 50m2. Tính chiều dài và chiều rộng ban đầu của sân bóng rổ. + Cho ΔABC nhọn nội tiếp đường tròn (O; R). Đường cao AD, BE của ΔABC cắt nhau tại H. Đường thẳng BE cắt đường tròn (O; R) tại F, đường thẳng AD cắt đường tròn (O; R) tại N. 1) Chứng mịnh CDHE là tứ giác nội tiếp. 2) Chứng minh DB.DC = DN.DA. 3) Gọi M là trung điểm của AB. Chứng minh ΔAHF cân và ME là tiếp tuyến đường tròn ngoại tiếp tứ giác CDHE. 4) Cho dây BC cố định và BC = R 3 . Xác định vị trí điểm A trên đường tròn (O; R) để DH.DA đạt giá trị lớn nhất. + Cho Parabol (P) : 1 2 2 y x và đường thẳng (d) : y = x + 4. a) Tìm toạ độ giao điểm A, B của parabol (P) và đường thẳng (d) b) Gọi C là giao điểm của đường thẳng (d) và trục tung, H và K lần lượt là hình chiếu của A và B trên trục hoành. Tính diện tích ΔCHK.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6