Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Đà Nẵng

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán năm học 2021 – 2022 sở GD&ĐT thành phố Đà Nẵng. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Đà Nẵng : + Tìm hai số tự nhiên, biết rằng tổng của chúng bằng 2021 và hiệu của số lớn và số bé bằng 15. + Một địa phương lên kế hoạch xét nghiệm SARS-CoV-2 cho 12000 người trong một thời gian quy định. Nhờ cải tiến phương pháp nên mỗi giờ xét nghiệm được thêm 1 000 người. Vì thế, địa phương này hoàn thành sớm hơn kế hoạch là 16 giờ. Hỏi theo kế hoạch, địa phương này phải xét nghiệm trong thời gian bao nhiêu giờ? + Cho tam giác nhọn ABC có AB < AC, các đường cao BD, CE (D thuộc AC, E thuộc AB) cắt nhau tại H. a) Chứng minh rằng tứ giác BEDC nội tiếp. b) Gọi M là trung điểm của BC. Đường tròn đường kính AH cắt AM tại điểm G (G khác A). Chứng minh rằng AE.AB = AC.AM. c) Hai đường thẳng DE và BC cắt nhau tại K. Chứng minh rằng MAC = GCM và đường thẳng nối tâm hai đường tròn ngoại tiếp hai tam giác MBB, MCD song song với đường thẳng KG.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề thi vào chuyên môn Toán năm 2020 2021 sở GD ĐT Lâm Đồng (chuyên Toán)
Nội dung Đề thi vào chuyên môn Toán năm 2020 2021 sở GD ĐT Lâm Đồng (chuyên Toán) Bản PDF - Nội dung bài viết Đề thi vào lớp 10 chuyên môn Toán năm 2020-2021 sở GD&ĐT Lâm Đồng (chuyên Toán) Đề thi vào lớp 10 chuyên môn Toán năm 2020-2021 sở GD&ĐT Lâm Đồng (chuyên Toán) Ngày Thứ Tư, 15 tháng 07 năm 2020, Sở Giáo dục và Đào tạo tỉnh Lâm Đồng đã tổ chức kỳ thi tuyển sinh vào lớp 10 chuyên môn Toán cho năm học 2020-2021. Đề thi này dành cho các thí sinh muốn thi vào các lớp chuyên Toán. Đề thi bao gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài là 120 phút. Ở đây mình sẽ trích dẫn một số bài toán trong đề thi: Bài 1: Cho hình thang ABCD (AB // CD), hai đường chéo vuông góc với nhau. Biết AC = 8 cm, BD = 6 cm. Hãy tính chiều cao của hình thang. Bài 2: Một tổ chức từ thiện cần chia đều một số quyển vở thành các phần quà để tặng cho các cháu nhỏ ở một trung tâm nuôi dạy trẻ mồ côi. Nếu mỗi phần quà giảm 6 quyển vở thì sẽ có thêm 5 phần quà nữa cho các cháu, còn nếu mỗi phần quà giảm 10 quyển vở thì các cháu sẽ có thêm 10 phần quà. Hỏi tổ chức từ thiện đó có bao nhiêu quyển vở. Bài 3: Cho hai đường tròn (O;R) và đường tròn (O';R') tiếp xúc trong tại điểm A (trong đó R > R'). Gọi BC là một dây của đường tròn lớn tiếp xúc với đường tròn nhỏ tại D. Hãy chứng minh rằng AD là tia phân giác của góc BAC. Đây là một số bài toán thú vị trong đề thi vào lớp 10 chuyên môn Toán của sở GD&ĐT Lâm Đồng. Hy vọng các thí sinh đã làm tốt trong kỳ thi này!
Đề thi vào chuyên môn Toán năm 2020 2021 sở GD ĐT Hà Nội (chuyên)
Nội dung Đề thi vào chuyên môn Toán năm 2020 2021 sở GD ĐT Hà Nội (chuyên) Bản PDF - Nội dung bài viết Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Hà Nội Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Hà Nội Đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài là 150 phút, kỳ thi diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020. Đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội: + Cho một bảng ô vuông kích thước 6 x 7 được tạo bởi các ô vuông kích thước 1 x 1. Tô màu vào các ô sao cho trong mỗi bảng ô vuông kích thước 2 x 3 hoặc 3 x 2, có ít nhất hai ô được tô màu đen có chung cạnh. Gọi m là số ô vuông được tô màu đen, hỏi có bao nhiêu cách tô sao cho m = 20 và tìm giá trị nhỏ nhất của m? + Cho tam giác ABC có ba góc nhọn và AB < AC. Khi gọi (I) là đường tròn nội tiếp tam giác ABC và K là tâm đường tròn ngoại tiếp trong góc A, chân các đường thẳng vuông góc từ I đến BC, CA, AB lần lượt là D, E, F. Đường thẳng AD cắt (I) tại M. Đường thẳng qua K song song với AD cắt BC tại N. Chứng minh tam giác MFD đồng dạng với tam giác BNK, góc BMF bằng góc DMP và đường tròn ngoại tiếp tam giác MBC đi qua trung điểm của KN. + Cho đa thức P(x) thỏa P(1) = 3 và P(3) = 7. Tìm đa thức dư khi chia P(x) cho x^2 - 4x + 3.
Đề thi vào chuyên môn Toán năm 2020 2021 sở GD ĐT Bình Dương (chuyên)
Nội dung Đề thi vào chuyên môn Toán năm 2020 2021 sở GD ĐT Bình Dương (chuyên) Bản PDF - Nội dung bài viết Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Bình Dương Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Bình Dương Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Bình Dương bao gồm 01 trang với 04 bài toán dạng tự luận. Thời gian làm bài là 150 phút, kỳ thi diễn ra vào thứ Sáu ngày 10 tháng 07 năm 2020. Đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Bình Dương: + Cho tam giác ABC cân tại A (BAC > 90 độ) nội tiếp đường tròn (O) bán kính R. Điểm M nằm trên cạnh BC sao cho BM = CM. Gọi D là giao điểm của AM và đường tròn (O) sao cho D khác A, H là trung điểm của BC. Gọi E là điểm chính giữa cung lớn BC, ED cắt BC tại N. a) Chứng minh rằng MA.MD = MB.MC và BN.CM = BM.CN. b) Gọi I là tâm đường tròn ngoại tiếp tam giác BMD. Chứng minh rằng ba điểm B, I, E thẳng hàng. c) Khi 2AB = R, xác định vị trí của M để 2MA + AD đạt giá trị nhỏ nhất. + Với các số thực x, y thỏa mãn 1 ≤ x ≤ y ≤ 5. Tìm giá trị nhỏ nhất của biểu thức: P = 2(x^2 + y^2) + 4(x - y - xy) + 7. + Tìm tất cả các số nguyên x, y thỏa mãn phương trình x^2 + xy + y^2 = x^2.y^2.
Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu
Nội dung Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu Bản PDF - Nội dung bài viết Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu bao gồm 01 trang có 05 bài toán dạng tự luận. Thời gian làm bài là 150 phút, kỳ thi diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020. Trích đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu: + Cho Parabal có phương trình: y = 3x2 (P) và đường thẳng có phương trình y = 6x + 2m − 1 (d). Tìm m để parabal (P) cắt đường thẳng (d) tại hai điểm phân biệt. + Cho phương trình: x2 − 6x + 2m + 1 = 0. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn x31 + x32 < 72. + Cho (O; R) và điểm A nằm ngoài đường tròn. Qua A kẻ hai tiếp tuyến AB và AC với đường tròn (B, C là hai tiếp điểm). I là một điểm thuộc đoạn BC (IB < IC). Kẻ đường thẳng d vuông góc với OI tại I. Đường thẳng d cắt đường thẳng AB, AC lần lượt E và F. 1. Chứng minh tứ giác OIBE và tứ giác OIF C là các tứ giác nội tiếp. 2. Chứng minh I là trung điểm của EF. 3. Qua O kẻ đường thẳng vuông góc với OA cắt đường thẳng AB, AC lần lượt tại P và Q. Tìm vị trí của A để diện tích tam giác APQ nhỏ nhất.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6