Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 6 môn Toán năm 2020 2021 phòng GD ĐT Nam Đàn Nghệ An

Nội dung Đề học sinh giỏi huyện lớp 6 môn Toán năm 2020 2021 phòng GD ĐT Nam Đàn Nghệ An Bản PDF - Nội dung bài viết Đề Toán học sinh giỏi huyện lớp 6 năm 2020 - 2021 Đề Toán học sinh giỏi huyện lớp 6 năm 2020 - 2021 Đề học sinh giỏi Huyện Toán lớp 6 năm 2020 - 2021 của phòng Giáo dục & Đào tạo Nam Đàn, Nghệ An đã được soạn theo hình thức đề thi tự luận. Đề bao gồm 5 bài toán trên 1 trang, với thời gian làm bài là 120 phút. Một số câu hỏi trích dẫn từ đề học sinh giỏi Huyện Toán lớp 6 năm 2020 - 2021: 1. Chứng minh rằng phân số (3n + 1)/(5n + 2) tối giản với mọi số tự nhiên n. 2. Tìm số tự nhiên a sao cho a chia cho 7 dư 3, chia cho 3 dư 1, chia hết cho 11 và a nằm trong khoảng từ 350 đến 500. 3. Trên đường thẳng xy, lấy điểm O. Trên tia Oy, lấy hai điểm M, N sao cho OM = 3cm, ON = 7cm. a) Tính độ dài đoạn thẳng MN. b) Lấy điểm P thuộc tia Oy sao cho MP = 2cm. Tính độ dài đoạn thẳng OP. c) Trên cùng một nửa mặt phẳng bờ là đường thẳng xy, vẽ hai tia Oz và Ot sao cho xOz = 50° và tOy = a°. Xác định giá trị của a để Oz là tia phân giác của góc xOt. Đề bài được biên soạn một cách cụ thể, giúp học sinh thực hành và rèn luyện kỹ năng giải toán một cách linh hoạt và sáng tạo.

Nguồn: sytu.vn

Đăng nhập để đọc

Đề học sinh giỏi huyện Toán 6 năm 2015 - 2016 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 6 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 6 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho biểu thức: 4 1 2 3 n P n a) Tìm số nguyên n để P nhận giá trị là số nguyên. b) Tìm số nguyên n để P có giá trị nhỏ nhất. + Cho tam giác ABC có BC cm 6. Trên tia đối của tia BC lấy điểm D sao cho BD cm 3. a) Tính độ dài CD. b) Gọi M là trung điểm của CD. Tính độ dài BM. c) Biết 0 DAC 120 Ax và Ay lần lượt là tia phân giác của B AC và B AD. Tính số đo xAy. d) Trên nửa mặt phẳng bờ là đường thẳng AB không chứa điểm D nếu vẽ thêm n tia gốc A phân biệt không trùng với các tia AB AC Ax thì có tất cả bao nhiêu góc đỉnh A được tạo thành? Vì sao? + Cho p là số nguyên tố lớn hơn 3. Chứng minh rằng biểu thức Cp p chia hết cho 24.
Đề học sinh giỏi huyện Toán 6 năm 2014 - 2015 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 6 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 6 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình : + Tìm tất cả các số có ba chữ số xyz biết rằng số 579xyz chia hết cho cả 5; 7 và 9. + Cho góc xOy và góc yOz là hai góc kề bù. Góc yOz bằng 300. a. Tính số đo góc xOy. b. Vẽ tia Om nằm trong góc xOy sao cho xOm = 750; tia On nằm trong góc yOz sao cho yOn = 150. Tính số đo góc nOm. c. Trên cùng một nửa mặt phẳng có bờ là đường thẳng xz chứa tia Oy, On, Om phải vẽ thêm bao nhiêu tia phân biệt chung gốc O (không trùng với các tia Ox, Oy, Oz, Om, On đã cho) để được 1225 góc? + Tìm hai số tự nhiên a và b. Biết rằng BCNN (a;b) = 630; ƯCLN (a;b) = 18 và a không chia hết cho b.
Đề học sinh giỏi huyện Toán 6 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 6 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 6 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho góc xOz và góc zOy là hai góc kề bù. Biết góc zOy bằng bốn lần góc xOz. a) Tính số đo góc xOz và góc zOy. b) Gọi Om là tia phân giác của góc zOy. Tính số đo góc xOm. + Cho 2015 đường thẳng. Trong đó hai đường thẳng bất kỳ nào cũng cắt nhau và không có ba đường thẳng nào cùng đi qua một điểm. Tính số giao điểm của chúng. + Cho a, b là hai số nguyên tố cùng nhau. Chứng minh rằng 8 3 5 2 a b a b là phân số tối giản.
Đề Khảo Sát HSG Toán 6 THCS Xuân Lẹ 2023-2024 Lần 1 Có Đáp Án

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6