Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển chọn 152 bài toán vận dụng cao trong các đề thi thử Nguyễn Văn Rin

Nội dung Tuyển chọn 152 bài toán vận dụng cao trong các đề thi thử Nguyễn Văn Rin Bản PDF - Nội dung bài viết Tuyển chọn 152 bài toán vận dụng cao trong các đề thi thử Nguyễn Văn Rin Tuyển chọn 152 bài toán vận dụng cao trong các đề thi thử Nguyễn Văn Rin Đây là tài liệu gồm 26 trang tuyển chọn 152 bài toán mức độ vận dụng cao trong các đề thi thử THPT Quốc gia 2017 của các trường và sở GD – ĐT trên cả nước, các bài tập có đáp án. Trong tài liệu này, bạn sẽ được thách thức với các bài toán như: Một cửa hàng bán lẻ phần mềm MathType với giá ban đầu là 10 USD, và sau đó giảm giá để tăng doanh số bán hàng. Bạn sẽ phải tính toán để xác định giá bán để cửa hàng thu được lợi nhuận lớn nhất. Cho ba tia Ox, Oy, Oz vuông góc với nhau, bạn sẽ phải tìm giá trị bé nhất của bán kính mặt cầu ngoại tiếp tứ diện OABC. Bạn sẽ phải tính toán thể tích phần không gian nằm bên trong cái lều đặc biệt với hình dạng hình “chóp lục giác cong đều”. Với sự đa dạng và phong phú của các bài toán, tài liệu này sẽ giúp bạn rèn luyện kỹ năng giải quyết bài toán và chuẩn bị tốt cho kỳ thi sắp tới. Hãy cùng thử sức và nâng cao trình độ toán học của mình với 152 bài toán vận dụng cao trong tài liệu này!

Nguồn: sytu.vn

Đăng nhập để đọc

Tổng ôn 50 dạng toán kỳ thi tốt nghiệp THPT môn Toán
Tài liệu gồm 689 trang, được tổng hợp bởi thầy giáo Th.S Nguyễn Hoàng Việt, tổng ôn 50 dạng toán kỳ thi tốt nghiệp THPT môn Toán. Bài 1. Phép Đếm 1. Bài 2. Cấp Số Cộng – Cấp Số Nhân 8. Bài 3. Sử Dụng Các Công Thức Liên Quan Đến Hình Nón 14. Bài 4. Xét Sự Đơn Điệu Dựa Vào Bảng Biến Thiên 23. Bài 5. Thể Tích Khối Lăng Trụ Đều 31. Bài 6. Giải Phương Trình -Bất Phương Trình Logarit 40. Bài 7. Sử Dụng Tính Chất Của Tích Phân 50. Bài 8. Cực Trị Hàm Số 61. Bài 9. Khảo Sát Hàm Số – Nhận Dạng Hàm Số, Đồ Thị 70. Bài 10. Sử Dụng Tính Chất Của Logarit 82. Bài 11. Tính Nguyên Hàm Bằng Cách Sử Dụng Tính Chất Của Nguyên Hàm 89. Bài 12. Khái Niệm Số Phức 97. Bài 13. Bài Toán Tìm Hình Chiếu Của Điểm Trên Mặt Phẳng Tọa Độ 104. Bài 14. Xác Định Tâm, Bán Kính, Diện Tích, Thể Tích Của Mặt Cầu 115. Bài 15. Xác Định Vectơ Pháp Tuyến Của Mặt Phẳng 124. Bài 16. Phương Trình Đường Thẳng 131. Bài 17. Xác Định Góc Giữa Hai Đường Thẳng, Đường Thẳng Và Mặt Phẳng, Hai Mặt Phẳng 141. Bài 18. Đếm Số Điểm Cực Trị Dựa Vào Bảng Biến Thiên 156. Bài 19. Tìm Giá Trị Lớn Nhất- Giá Trị Nhỏ Nhất Của Hàm Số Trên Một Đoạn 167. Bài 20. Biến Đổi Biểu Thức Lôgarit 176. Bài 21. Phương Trình, Bất Phương Trình Mũ Và Logarit 185. Bài 22. Khối Trụ 192. Bài 23. Liên Quan Giao Điểm Từ Hai Đồ Thị 203. Bài 24. Nguyên Hàm Cơ Bản 217. Bài 25. Toán Thực Tế Sử Dụng Hàm Mũ Và Lôgarit 226. Bài 26. Tính Thể Tích Khối Lăng Trụ Đứng 236. Bài 27. Tiệm Cận Của Đồ Thị Hàm Số 251. Bài 28. Tính Chất Đồ Thị – Hàm Số – Đạo Hàm 260. Bài 29. Ứng Dụng Tích Phân 271. Bài 30. Các Phép Toán Số Phức 285. Bài 31. Biểu Diễn Hình Học Của Số Phức 292. Bài 32. Tích Vô Hướng Của Hai Vectơ Trong Không Gian 299. Bài 33. Viết Phương Trình Mặt Cầu 305. Bài 34. Phương Trình Mặt Phẳng Liên Quan Đến Đường Thẳng 312. Bài 35. Tìm Véc-Tơ Chỉ Phương Của Đường Thẳng 322. Bài 36. Tính Xác Suất Của Biến Cố Bằng Định Nghĩa 331. Bài 37. Khoảng Cách Giữa Hai Đường Thẳng Chéo Nhau 349. Bài 38. Tích Phân Cơ Bản (A), Kết Hợp (B) 371. Bài 39. Tìm Tham Số Để Hàm Số Bậc 1 Trên Bậc 1 Đơn Điệu 395. Bài 40. Khối Nón 416. Bài 41. Lôgarit 435. Bài 42. Max, Min Của Hàm Trị Tuyệt Đối Có Chứa Tham Số 454. Bài 43. Phương Trình Logarit Có Chứa Tham Số 474. Bài 44. Nguyên Hàm Từng Phần 494. Bài 45. Liên Quan Đến Giao Điểm Của Hai Đồ Thị 513. Bài 46. Tìm Cực Trị Của Hàm Số Hợp Khi Biết Đồ Thị Hàm Số 545. Bài 47. Ứng Dụng Phương Pháp Hàm Số Giải Phương Trình Mũ Và Logarit 576. Bài 48. Tích Phân Liên Quan Đến Phương Trình Hàm Ẩn 602. Bài 49. Tính Thể Tích Khối Chóp Biết Góc Giữa Hai Mặt Phẳng 627. Bài 50. Tính Đơn Điệu Của Hàm Số Liên Kết 652.
Chinh phục VDC Hình học luyện thi THPT năm 2023 - Phan Nhật Linh
Tài liệu gồm 491 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, hướng dẫn chinh phục VDC Hình học luyện thi THPT năm 2023. LỜI NÓI ĐẦU : Các em học sinh, quý thầy cô và bạn đọc thân mến! Cuốn sách “Chinh phục Vận dụng – Vận dụng cao Hình học 2023” này được nhóm tác giả biên soạn với mục đích giúp các em học sinh khá giỏi trên toàn quốc chinh phục được các câu khó trong đề thi của Bộ giáo dục trong các năm gần đây. Trong mỗi cuốn sách, chúng tôi trình bày một cách rõ ràng và khoa học, tạo sự thuận lợi nhất cho các em học tập và tham khảo. Tất cả các bài tập trong sách chúng tôi đều tóm tắt lý thuyết và tiến hành giải chi tiết 100% để các em tiện lợi cho việc ôn tập, so sánh đáp án và tra cứu thông tin. Để có thể biên soạn đầy đủ và hoàn thiện bộ sách này, nhóm tác giả có sưu tầm, tham khảo một số bài toán trích từ đề thi của các Sở, trường Chuyên trên các nước và một số thầy cô trên toàn quốc. Chân thành cảm ơn quý thầy cô đã sáng tạo ra các bài toán hay và các phương pháp giải toán hiệu quả nhất. Mặc dù nhóm tác giả đã tiến hành biên soạn và phản biện kĩ lưỡng nhất nhưng vẫn không tránh khỏi sai sót. Chúng tôi rất mong nhận được những ý kiến phản hồi và đóng góp từ quý thầy cô, các em học sinh và bạn đọc để cuốn sách trở nên hoàn thiện hơn. Cuối cùng, nhóm tác giả xin gửi lời chúc sức khỏe đến quý thầy cô, các em học sinh và quý bạn đọc. Chúc quý vị có thể khai thác hiệu quả nhất các kiến thức khi cầm trên tay cuốn sách này! Trân trọng. MỤC LỤC : CHƯƠNG 1: KHOẢNG CÁCH VÀ GÓC TRONG KHÔNG GIAN. Chủ đề 01. Khoảng cách trong không gian 1. Chủ đề 02. Góc trong không gian 58. CHƯƠNG 2: KHỐI ĐA DIỆN VÀ THỂ TÍCH KHỐI ĐA DIỆN. Chủ đề 03. Thể tích khối chóp 112. Chủ đề 04. Thể tích khối lăng trụ 159. Chủ đề 05. Tỷ lệ thể tích khối đa diện 190. Chủ đề 06. Cực trị hình học không gian 241. CHƯƠNG 3: KHỐI TRÒN XOAY VÀ THỂ TÍCH KHỐI TRÒN XOAY. Chủ đề 07. Khối nón – trụ – cầu 290. Chủ đề 08. Khối cầu ngoại tiếp khối đa diện 322. CHƯƠNG 4: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN. Chủ đề 09. Phương trình mặt phẳng 363. Chủ đề 10. Phương trình đường thẳng 387. Chủ đề 11. Phương trình mặt cầu 426. Chủ đề 12. Ứng dụng phương pháp tọa độ trong không gian 477.
Chinh phục VDC Giải tích luyện thi THPT năm 2023 - Phan Nhật Linh
Tài liệu gồm 498 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, hướng dẫn chinh phục VDC Giải tích luyện thi THPT năm 2023. LỜI NÓI ĐẦU : Các em học sinh, quý thầy cô và bạn đọc thân mến! Cuốn sách “Chinh phục Vận dụng – Vận dụng cao Giải tích 2023” này được nhóm tác giả biên soạn với mục đích giúp các em học sinh khá giỏi trên toàn quốc chinh phục được các câu khó trong đề thi của Bộ giáo dục trong các năm gần đây. Trong mỗi cuốn sách, chúng tôi trình bày một cách rõ ràng và khoa học, tạo sự thuận lợi nhất cho các em học tập và tham khảo. Tất cả các bài tập trong sách chúng tôi đều tóm tắt lý thuyết và tiến hành giải chi tiết 100% để các em tiện lợi cho việc ôn tập, so sánh đáp án và tra cứu thông tin. Để có thể biên soạn đầy đủ và hoàn thiện bộ sách này, nhóm tác giả có sưu tầm, tham khảo một số bài toán trích từ đề thi của các Sở, trường Chuyên trên các nước và một số thầy cô trên toàn quốc. Chân thành cảm ơn quý thầy cô đã sáng tạo ra các bài toán hay và các phương pháp giải toán hiệu quả nhất. Mặc dù nhóm tác giả đã tiến hành biên soạn và phản biện kĩ lưỡng nhất nhưng vẫn không tránh khỏi sai sót. Chúng tôi rất mong nhận được những ý kiến phản hồi và đóng góp từ quý thầy cô, các em học sinh và bạn đọc để cuốn sách trở nên hoàn thiện hơn. Cuối cùng, nhóm tác giả xin gửi lời chúc sức khỏe đến quý thầy cô, các em học sinh và quý bạn đọc. Chúc quý vị có thể khai thác hiệu quả nhất các kiến thức khi cầm trên tay cuốn sách này! Trân trọng. MỤC LỤC : CHƯƠNG 1: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐTHS. Chủ đề 01. Tính đơn điệu của hàm số 1. Chủ đề 02. Cực trị của hàm số 52. Chủ đề 03. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số 109. Chủ đề 04. Đường tiệm cận của đồ thị hàm số 159. Chủ đề 05. Sự tương giao của đồ thị hàm số 193. Chủ đề 06. Tiếp tuyến của đồ thị hàm số 244. CHƯƠNG 2: HÀM SỐ LŨY THỪA – MŨ VÀ HÀM SỐ LOGARIT. Chủ đề 07. Phương trình – BPT mũ logarit chứa tham số 289. Chủ đề 08. Kỹ năng sử dụng hàm đặc trưng 332. CHƯƠNG 3: NGUYÊN HÀM – TÍCH PHÂN VÀ ỨNG DỤNG. Chủ đề 09. Nguyên hàm – tích phân và ứng dụng 372. CHƯƠNG 4: SỐ PHỨC. Chủ đề 10. Các bài toán nâng cao số phức. 407. CHƯƠNG 5: TỔ HỢP XÁC SUẤT. Chủ đề 11. Các bài toán xác suất nâng cao 465.
Đề cương ôn thi tốt nghiệp THPT năm 2022 môn Toán - Nguyễn Hoàng Việt
Đề cương ôn thi tốt nghiệp THPT năm 2022 môn Toán gồm 193 trang, được biên soạn bởi thầy giáo Th.S Nguyễn Hoàng Việt (giáo viên Toán trường THPT Lương Thế Vinh, tỉnh Quảng Bình). MỤC LỤC : Câu 39 1. Câu 40 12. + Dạng 1. Sự tương giao biết đồ thị hàm f(x) – loại không có tham số m 12. + Dạng 2. Sự tương giao biết đồ thị hàm f(x) – Loại có tham số m 18. + Dạng 3. Sự tương giao biết đồ thị hàm f(x) – Loại có chứa hàm lượng giác 21. + Dạng 4. Sự tương giao biết bảng biến thiên hàm số f(x) – Loại không có tham số m 23. + Dạng 5. Sự tương giao biết bảng biến thiên hàm số f(x) – Loại có tham số m 32. + Dạng 6. Sự tương giao biết bảng biến thiên hàm số f(x) – Có chứa hàm số lượng giác 34. Câu 41 37. + Dạng 7. Tính nguyên hàm & tích phân sử dụng tính chất và nguyên hàm cơ bản 37. + Dạng 8. Tính nguyên hàm & tích phân bằng phương pháp đổi biến 41. + Dạng 9. Tích phân từng phần 45. + Dạng 10. Tích phân hàm ẩn 50. Câu 42 58. Câu 43 68. + Dạng 11. Tham số m của phương trình bậc hai 68. + Dạng 12. Phương trình đưa về bậc hai 70. + Dạng 13. Tìm số phức thỏa mãn điều kiện cho trước 72. + Dạng 14. Tính toán các yếu tố của số phức (mức vận dụng) 74. + Dạng 15. Bài toán tập hợp điểm 77. Câu 44 81. + Dạng 16. Bài toán min – max với quỹ tích là đường tròn (Phương pháp hình học) 82. + Dạng 17. Bài toán min – max với quỹ tích là đường tròn (Phương pháp đại số) 91. + Dạng 18. Bài toán min – max với quỹ tích là đường thẳng (Phương pháp hình học) 97. + Dạng 19. Bài toán min – max với quỹ tích là đường thẳng (Phương pháp đại số) 100. + Dạng 20. Bài toán min – max với quỹ tích là đường tròn, đường thẳng (Phương pháp hình học) 104. + Dạng 21. Bài toán min – max với quỹ tích là elip 109. + Dạng 22. Bài toán min – max với quỹ tích là pararbol 110. + Dạng 23. Bài toán min – max với quỹ tích là hyperbol 113. Câu 45 115. + Dạng 24. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số f0(x), g0(x) khi biết các cực trị của hàm số f(x) − g(x) hoặc các cực trị của hàm số f0(x) − g0 (x) 116. + Dạng 25. Tính diện tích hình phẳng dựa vào tính chất đồ thị và các hoành độ tiếp điểm 118. + Dạng 26. Ứng dụng diện tích hình phẳng để so sánh giá trị hàm số 120 . + Dạng 27. Ứng dụng diện tích hình phẳng để tính tích phân 123 . Câu 46 126. + Dạng 28. Lập đường thẳng đi qua một điểm A, cắt đường thẳng d1 và song song với mặt phẳng (P) 126. + Dạng 29. Lập đường thẳng d đi qua M, vuông góc với d1 và cắt d2 130. + Dạng 30. Lập đường thẳng – yêu cầu tìm vectơ chỉ phương thông qua giao điểm 131. + Dạng 31. Lập đường thẳng – yêu cầu tìm vectơ chỉ phương thông qua tích có hướng 133. Câu 47 136. + Dạng 32. Khối nón bị cắt bởi một mặt phẳng đi qua đỉnh và không qua trục 136. + Dạng 33. Khối nón nội tiếp, ngoại tiếp khối tròn xoay hoặc khối đa diện 138. + Dạng 34. Khối trụ bị cắt bởi một mặt phẳng song song với trục 139. + Dạng 35. Khối trụ bị cắt bởi mặt phẳng cắt qua trục 140. + Dạng 36. Khối trụ nội tiếp ngoại tiếp khối đa diện hoặc khối tròn xoay 141. + Dạng 37. Mặt cầu ngoại tiếp khối lăng trụ 142. + Dạng 38. Mặt cầu ngoại tiếp khối chóp 143. Câu 48 148. + Dạng 39. Phương trình, bất phương trình có thể chuyển về dạng f(A) = f(B) hoặc f(A) ≤ f(B), trong đó f(x) là hàm số đơn điệu 148. + Dạng 40. Phương trình, bất phương trình f(x, y) = 0 hoặc f(x, y) ≥ 0 có hàm số f(x, y) đơn điệu theo biến x hoặc biến y 156. + Dạng 41. Phương trình, bất phương trình dạng f(x, y) = 0 hoặc f(x, y) ≥ 0, trong đó hàm số f(x, y) có đạo hàm cấp hai theo biến x hoặc biến y không đổi dấu 163. + Dạng 42. Sử dụng bất đẳng thức Bernoulli hoặc ax ≤ mx + n, ∀x ∈ [α; β] 165. Câu 49 167. + Dạng 43. Các bài toán tìm điểm 167. + Dạng 44. Các bài toán lập phương trình mặt cầu 170. + Dạng 45. Các bài toán lập phương trình mặt phẳng 173. Câu 50 178. + Dạng 46. Tìm cực trị của hàm số hợp g(x) = f[u(x)] khi biết đồ thị hàm số f(x) hay BBT hàm số f(x) 178. + Dạng 47. Tìm tham số để hàm số chứa giá trị tuyệt đối đạt giá trị lớn nhất trên một đoạn 184. + Dạng 48. Tìm tham số để hàm số hợp có số điểm cực trị cho trước 184.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6