Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Trà Ôn Vĩnh Long

Nội dung Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Trà Ôn Vĩnh Long Bản PDF - Nội dung bài viết Đề thi học sinh giỏi lớp 9 môn Toán năm 2022-2023 phòng GD&ĐT Trà Ôn Vĩnh Long Đề thi học sinh giỏi lớp 9 môn Toán năm 2022-2023 phòng GD&ĐT Trà Ôn Vĩnh Long Xin chào quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến mọi người đề thi chọn học sinh giỏi vòng huyện môn Toán lớp 9 năm học 2022-2023 do phòng Giáo dục và Đào tạo huyện Trà Ôn, tỉnh Vĩnh Long tổ chức. Đề thi được biên soạn theo hình thức tự luận với 6 bài toán, thời gian làm bài 150 phút (không kể thời gian giám thị coi thi phát đề). Trích dẫn một số câu hỏi trên Đề học sinh giỏi huyện Toán lớp 9 năm 2022-2023 phòng GD&ĐT Trà Ôn - Vĩnh Long: Chứng minh rằng $2^{70} + 3^{70}$ chia hết cho 13. Tìm nghiệm nguyên của phương trình: $2(x + y) + 1 = 3xy$. Cho M bất kì trên đường tròn tâm O đường kính AB. Tiếp tuyến tại M và tại B của (O) cắt nhau tại D. Qua O kẻ đường thẳng vuông góc với OD cắt MD tại C và cắt BD tại N. Chứng minh rằng B, D, M, O cùng thuộc một đường tròn. Chứng minh DC = DN. Chứng minh AC là tiếp tuyến của đường tròn tâm O. Gọi H là chân đường vuông góc kẻ từ M xuống AB, I là trung điểm của MH. Chứng minh B, C, I thẳng hàng. Cho các số thực dương x, y, z thỏa mãn $x + 2y + 3z \geq 20$. Tìm giá trị nhỏ nhất của biểu thức $A = x + y + z + \frac{3}{x} + \frac{9}{2y} + \frac{4}{z}$. Đề thi sẽ giúp các em ôn tập và rèn luyện kỹ năng giải các bài toán phức tạp, đồng thời nắm vững kiến thức Toán lớp 9. Chúc các em thi tốt!

Nguồn: sytu.vn

Đăng nhập để đọc

Đề khảo sát lớp 9 môn Toán vòng 1 năm 2023 2024 trường THCS Giảng Võ Hà Nội
Nội dung Đề khảo sát lớp 9 môn Toán vòng 1 năm 2023 2024 trường THCS Giảng Võ Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát Toán lớp 9 vòng 1 năm 2023 - 2024 trường THCS Giảng Võ Hà Nội Đề khảo sát Toán lớp 9 vòng 1 năm 2023 - 2024 trường THCS Giảng Võ Hà Nội Chúng tôi xin trân trọng giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát Toán vòng 1 năm học 2023 - 2024 tại trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào Chủ Nhật ngày 01 tháng 10 năm 2023. Một số câu hỏi trích dẫn từ đề khảo sát bao gồm: Cho số tự nhiên n lớn hơn 1, biết n2 + 4 và n2 + 11 đều là các số nguyên tố. Chứng minh rằng n chia hết cho 5. Trong tam giác ABC vuông tại A (AB < AC), đường cao AH cắt BC tại H, M là trung điểm của AC, N là trung điểm của HC. Đường thẳng qua C song song với AB cắt MN tại P. Cần chứng minh các quan hệ đồng dạng và vuông góc trong tam giác. Các số nguyên dương từ 1 đến 100 được chia thành 25 tập hợp sao cho mỗi tập hợp chứa ít nhất một phần tử. Nhiệm vụ là chứng minh tồn tại ba số nguyên dương thuộc cùng một tập hợp sao cho chúng tạo thành độ dài ba cạnh của một tam giác. Hãy chuẩn bị kỹ lưỡng và tự tin tham gia đề khảo sát để kiểm tra kiến thức và ôn tập cho kỳ thi sắp tới. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!
Đề chọn HSG lớp 9 môn Toán vòng 2 năm 2023 2024 trường Nguyễn Tất Thành Hà Nội
Nội dung Đề chọn HSG lớp 9 môn Toán vòng 2 năm 2023 2024 trường Nguyễn Tất Thành Hà Nội Bản PDF - Nội dung bài viết Đề chọn HSG lớp 9 môn Toán vòng 2 năm 2023 2024 trường Nguyễn Tất Thành Hà Nội Đề chọn HSG lớp 9 môn Toán vòng 2 năm 2023 2024 trường Nguyễn Tất Thành Hà Nội Sytu xin gửi đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 vòng 2 năm học 2023 – 2024 tại trường THCS & THPT Nguyễn Tất Thành, Đại học Sư Phạm Hà Nội, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 25 tháng 09 năm 2023.
Đề HSG lớp 9 môn Toán vòng 2 năm 2023 2024 phòng GD ĐT thành phố Hải Dương
Nội dung Đề HSG lớp 9 môn Toán vòng 2 năm 2023 2024 phòng GD ĐT thành phố Hải Dương Bản PDF - Nội dung bài viết Đề HSG Toán lớp 9 vòng 2 năm 2023 - 2024 phòng GD&ĐT thành phố Hải Dương Đề HSG Toán lớp 9 vòng 2 năm 2023 - 2024 phòng GD&ĐT thành phố Hải Dương Chào mừng đến với Đề thi chọn học sinh giỏi môn Toán lớp 9 vòng 2 năm học 2023 - 2024 của Phòng Giáo dục và Đào tạo thành phố Hải Dương, tỉnh Hải Dương! Đề thi này sẽ là cơ hội thách thức và phát triển kiến thức của các em học sinh lớp 9. Trích dẫn một số câu hỏi thú vị trong Đề thi: Cho đa thức \( A = 12x^2 - 3y^2 + 8xy + 2x + y \) biết rằng với \( x = a \) và \( y = b \) thì \( A = 0 \). Chứng minh rằng \( 6a + b + 1 \) là bình phương của một số nguyên. Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB và AC. Gọi M là giao điểm của BF và CE. Chứng minh rằng \( AB \times CF = AC \times AE \). Cho tam giác ABC, điểm D trên cạnh BC sao cho \( DC = 4 \times BD \). Điểm M thay đổi trên đoạn thẳng AD, BM cắt AC tại E, CM cắt AB tại F. Xác định vị trí điểm M trên AD để diện tích tam giác DEF đạt giá trị lớn nhất. Hy vọng rằng các em sẽ tự tin và thành công trong việc giải quyết các bài toán thú vị và phức tạp trong Đề thi này. Chúc các em học tốt và đạt kết quả cao!
Đề chọn đội tuyển HSG lớp 9 môn Toán vòng 2 năm 2023 2024 trường THCS Cầu Giấy Hà Nội
Nội dung Đề chọn đội tuyển HSG lớp 9 môn Toán vòng 2 năm 2023 2024 trường THCS Cầu Giấy Hà Nội Bản PDF - Nội dung bài viết Đề chọn đội tuyển HSG Toán lớp 9 vòng 2 năm 2023-2024 trường THCS Cầu Giấy Hà Nội Đề chọn đội tuyển HSG Toán lớp 9 vòng 2 năm 2023-2024 trường THCS Cầu Giấy Hà Nội Chào các thầy cô giáo và các bạn học sinh lớp 9. CLB Văn Hóa Toán trường THCS Cầu Giấy sẽ tổ chức đề chọn đội tuyển học sinh giỏi môn Toán lớp 9 vòng 2 trong năm học 2023-2024. Kỳ thi sẽ diễn ra vào ngày thứ Năm, ngày 21 tháng 09 năm 2023. Dưới đây là một số câu hỏi mẫu trong đề thi: - Cho các số thực không âm a, b, c thỏa mãn a + b + c = 4. Hãy tìm giá trị lớn nhất của biểu thức P = 3a + ab + abc. - Cho hình vuông ABCD, gọi O là giao điểm của hai đường chéo. E là điểm bất kì thuộc đoạn OB, trên tia đối của tia EC lấy điểm F sao cho OF = OC. Chứng minh rằng FE là phân giác của góc BFD và kẻ ET vuông góc với FD tại T. Chứng minh rằng FO, AH và ST đồng quy. - Xét tập T = {1; 2; 3; ...; 10}. Hãy chỉ ra một tập con U có 4 phần tử của T thỏa mãn với mọi x, y thuộc U, x khác y thì x + y không chia hết cho x - y.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6