Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đường thẳng và mặt phẳng trong không gian, quan hệ song song - Lư Sĩ Pháp

giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu chuyên đề đường thẳng và mặt phẳng trong không gian, quan hệ song song do thầy Lư Sĩ Pháp biên soạn, tài liệu gồm 54 trang tổng hợp các kiến thức cần nắm, phân dạng bài tập và hướng dẫn giải các dạng toán thuộc chương trình Hình học 11 chương 2, tài liệu được soạn theo hướng tự luận kết hợp với trắc nghiệm, phần tự luận được phân tích và giải chi tiết nhằm giúp học sinh nắm được kỹ thuật giải toán, phần trắc nghiệm có đáp án giúp học sinh rèn luyện, phù hợp với xu hướng kiểm tra – thi cử hiện hành. §1. ĐẠI CƯƠNG VỀ ĐƯỜNG THẲNG VÀ MẶT PHẲNG Vấn đề 1 . Tìm giao tuyến của hai mặt phẳng: Ta đi tìm hai điểm chung phân bệt của hai mặt phẳng đó. Giao tuyến của chúng là đường thẳng đi qua hai điểm đó. Vấn đề 2 . Tìm giao điểm của đường thẳng d và mặt phẳng (α): Để tìm giao điểm của một đường thẳng d và một mặt phẳng (α), ta có thể đưa về việc tìm giao điểm của đường thẳng d với một đường thẳng d’ nằm trong mặt phẳng (α). Vấn đề 3 . Chứng minh ba điểm thẳng hàng: Để chứng ba điểm thẳng hàng, ta có thể chứng minh chúng cùng thuộc hai mặt phẳng riêng biệt. §2. HAI ĐƯỜNG THẲNG CHÉO NHAU VÀ HAI ĐƯỜNG THẲNG SONG SONG Vấn đề 1 . Tìm giao tuyến hai mặt phẳng: Nếu hai mặt phẳng (α) và (β) có điểm chung là S và lần lượt chứa hai đường thẳng song song d và d’ thì giao tuyến của (α) và (β) là đường thẳng ∆ qua S và song song với d và d’. [ads] Vấn đề 2 . Tìm thiết điện của hình chóp khi cắt bởi một mặt phẳng: Ta tìm giao tuyến của mặt phẳng đó với các mặt bên của hình chóp. Đoạn nối giữa các giao tuyến cho ta một hình. Hình đó là thiết diện cần tìm. Vấn đề 3 . Chứng minh hai đường thẳng song song: + Chứng minh chúng cùng thuộc một mặt phẳng và dùng phương pháp chứng minh hai đường thẳng song song trong hình học phẳng (như tính chất đường trung bình của tam giác, định lí Talét đảo, tính chất song song của hai đường thẳng cùng vuông góc với đường thẳng thứ ba, …). + Chứng minh chúng cùng song song với đường thẳng thứ ba. + Dùng tính chất: Hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng(nếu có) cũng song song với hai đường thẳng ấy. + Dùng định lý về giao tuyến của ba mặt phẳng. §3. ĐƯỜNG THẲNG SONG SONG VỚI MẶT PHẲNG Vấn đề 1 . Chứng minh đường thẳng song song với mặt phẳng: Để chứng minh đường thẳng d song song với mặt phẳng (α) ta chứng minh d không nằm trong (α) và song song với đường thẳng a chứa trong (α). Vấn đề 2 . Dựng thiết diện song song với một đường thẳng: + Cho đường thẳng d song song với mặt phẳng (α). Nếu mặt phẳng (β) chứa d và cắt (α) theo giao tuyến d’ thì d’ song song với d. + Thiết diện cắt bởi một mặt phẳng chứa một đường thẳng song song với một đường thẳng cho trước được xác định bằng cách phối hợp hai cách xác định giao tuyến đã biết. §4. HAI MẶT PHẲNG SONG SONG Vấn đề . Chứng minh hai mặt phẳng song song: + Vận dụng định lí Nếu mặt phẳng (α) chứa hai đường thẳng cắt nhau a, b và a, b cùng song với mặt phẳng (β) thì (α) song song với (β). + Ta chứng minh hai mặt phẳng (α) và (β) cùng song song với mặt phẳng thứ ba (γ). §5. PHÉP CHIẾU SONG SONG TỔNG HỢP CÁC DẠNG TOÁN CƠ BẢN CỦA HÌNH HỌC 11 CHƯƠNG 2 TRẮC NGHIỆM ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN – QUAN HỆ SONG SONG  MỘT SỐ ĐỀ ÔN KIỂM TRA MỘT TIẾT HÌNH HỌC 11 CHƯƠNG 2

Nguồn: toanmath.com

Đăng nhập để đọc

Đường thẳng và mặt phẳng trong không gian, quan hệ song song - Nguyễn Ngọc Dũng
Nhằm giúp các em học sinh học tốt bộ môn hình học 11, nhóm chúng tôi biên soạn ebook “Hình học 11”. Ở phần 1 này, chúng tôi tổng hợp kiến thức, phương pháp giải toán và bài tập tham khảo của phần “Quan hệ song song”. Đây là phần kiến thức cơ bản và là nền tảng để các em học sinh bắt đầu bước chân vào “Hình học không gian”. §1. Đại cương về đường thẳng và mặt phẳng 1. Một số khái niệm về hình không gian 2. Biểu diễn một hình không gian như thế nào? 3. Một mặt phẳng được xác định như thế nào? 4. Các tính chất thừa nhận trong không gian 5. Hình chóp 6. Một số lưu ý khi học hình không gian 7. Bài tập tự luận Dạng 1: Xác định giao tuyến của hai mặt phẳng Dạng 2: Xác định giao điểm của đường thẳng và mặt phẳng + Dạng 1: Hình biển diễn không gian và các tính chất thừa nhận + Dạng 2: Giao tuyến của hai mặt phẳng và thiết diện [ads] + Dạng 3: Giao điểm của đường thẳng và mặt phẳng + Dạng 4: Ba điểm thẳng hàng và các bài toán khác §2. Hai đường thẳng song song. Hai đường thẳng chéo nhau §3. Đường thẳng song song mặt phẳng §4. Hai mặt phẳng song song + Dạng 1: Xét sự song song của hai mặt phẳng + Dạng 2: Thiết diện song song với một mặt phẳng cho trước + Dạng 3: Xét sự song song của hai mặt phẳng + Dạng 4: Thiết diện song song với một mặt phẳng cho trước + Dạng 5: Xét sự song song của hai mặt phẳng + Dạng 6: thiết diện song song với một mặt phẳng cho trước §5. Phép chiếu song song. Hình biểu diễn của một hình không gian §6. Ôn tập cuối chương
Đường thẳng và mặt phẳng trong không gian, quan hệ song song - Trần Quốc Nghĩa
Tài liệu gồm 78 trang phân dạng chi tiết các dạng toán đường thẳng và mặt phẳng trong không gian, quan hệ song song kèm theo hệ thống bài tập tự luận và trắc nghiệm có đáp án. CÁC DẠNG TOÁN ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN QUAN HỆ SONG SONG Vấn đề 1. ĐẠI CƯƠNG VỀ ĐƯỜNG THẲNG VÀ MẶT PHẲNG + Dạng 1. Các quan hệ cơ bản. Sử dụng hệ tiên đề + Dạng 2. Tìm giao tuyến của hai mặt phẳng (loại 1) + Dạng 3. Tìm giao điểm của đường thẳng và mặt phẳng. Tìm thiết diện (loại 1) + Dạng 4. Chứng minh các điểm thẳng hàng. Chứng minh các đường thẳng đồng qui Dạng 5. Chứng minh đường thẳng di động d đi qua điểm cố định I + Dạng 6. Quỹ tích giao điểm I của hai đường thẳng di động d1 và d2 BÀI TẬP TỔNG HỢP VẤN ĐỀ 1 [ads] Vấn đề 2. QUAN HỆ SONG SONG TRONG KHÔNG GIAN + Dạng 1. Chứng minh hai đường thẳng song song + Dạng 2. Tìm giao tuyến của hai mặt phẳng (loại 2) + Dạng 3. Chứng minh đường thẳng song song với mặt phẳng + Dạng 4. Tìm thiết diện của hình chóp và mp(P) (loại 2) + Dạng 5. Chứng minh hai mặt phẳng song song + Dạng 6. Định lí Talet trong không gian + Dạng 7. Hình lăng trụ – Hình hộp – Hình chóp cụt BÀI TẬP TỔNG HỢP VẤN ĐỀ 2 BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 3 + Bài 1. Đại cương về đường thẳng và mặt phẳng + Bài 2. Hai đường thẳng song song + Bài 3. Đường thẳng song song với mặt phẳng + Bài 4. Hai mặt phẳng song song + Bài 5. Phép chiếu song song BÀI TẬP TỔNG HỢP CHỦ ĐỀ 3
Phân dạng và hướng dẫn giải bài toán quan hệ song song trong không gian - Đặng Việt Đông
Tài liệu gồm 82 trang phân dạng, hướng dẫn phương pháp giải và tuyển tập các bài toán trắc nghiệm chủ đề quan hệ song song trong không gian (Hình học 11) có đáp án kèm lời giải chi tiết. Các dạng toán gồm: Đại cương về đường thẳng và mặt phẳng trong không gian A – Lý thuyết tóm tắt B – Bài tập + Dạng 1. Xác định giao tuyến của hai mặt phẳng + Dạng 2. Xác định giao điểm của đường thẳng và mặt phẳng + Dạng 3. Ba điểm thẳng hàng, ba đường thẳng đồng quy trong không gian + Dạng 4. Xác định thiết diện của một mặt phẳng với hình chóp Hai đường thẳng chéo nhau và hai đường thẳng song song A – Lý thuyết tóm tắt B – Bài tập + Dạng 1. Chứng minh hai đường thẳng song song + Dạng 2. Chứng minh bốn điểm đồng phẳng và ba đường thẳng đồng qui [ads] Đường thẳng song song với mặt phẳng A – Lý thuyết tóm tắt B – Bài tập + Dạng 1. Chứng minh đường thẳng song song với mặt phẳng + Dạng 2. Xác định thiết diện song song với đường thẳng Hai mặt phẳng song song A – Lý thuyết tóm tắt B – Bài tập + Dạng 1. Chứng minh hai mặt phẳng song song + Dạng 2. Xác định thiết diện của (a) với hình chóp khi biết (a) với một mặt phẳng (b) cho trước
Phương pháp xác định giao điểm - giao tuyến - thiết diện trong không gian
Tài liệu hướng dẫn phương pháp xác định giao điểm, giao tuyến và thiết diện trong hình học không gian thông qua các bài tập có lời giải chi tiết. Dạng 1 : Xác định giao tuyến của hai mặt phẳng (a) và (b) Phương pháp: + Tìm hai điểm chung phân biệt của hai mặt phẳng (a) và (b) + Đường thẳng đi qua hai điểm chung ấy là giao tuyến cần tìm Chú ý: Để tìm chung của (a) và (b) thường tìm 2 đường thẳng đồng phẳng lần lượt nằm trong hai mp giao điểm nếu có của hai đường thẳng này là điểm chung của hai mặt phẳng Dạng 2: Xác định giao điểm của đường thẳng a và mặt phẳng (a) Phương pháp: + Tìm đường thẳng b nằm trong mặt phẳng (a) + Giao điểm của a và b là giao đt a và mặt phẳng (a) [ads] Dạng 3: Chứng minh ba điểm thẳng hàng Phương pháp: + Chứng minh ba điểm đó cùng thuộc hai mp phân biệt + Khi đó ba điểm thuộc đường thẳng giao tuyến của hai mp Dạng 4: Tìm thiết diện của hình chóp và mặt phẳng (a) Chú ý: Mặt phẳng (a) có thể chỉ cắt một số mặt của hình chóp Cách 1: Xác định thiết diện bằng cách kéo dài các giao tuyến Cách 2: Xác định thiết diện bằng cách vẽ giao tuyến phụ

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6