Nội dung Đề tuyển sinh chuyên môn Toán (chung) năm 2023 2024 sở GD ĐT Hà Nam Bản PDF - Nội dung bài viết Đề thi tuyển sinh chuyên môn Toán (chung) năm 2023 - 2024 sở GD&ĐT Hà Nam Đề thi tuyển sinh chuyên môn Toán (chung) năm 2023 - 2024 sở GD&ĐT Hà Nam Sytu xin gửi đến quý thầy cô và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (đề chung) năm học 2023 – 2024 của sở Giáo dục và Đào tạo UBND tỉnh Hà Nam. Đề thi bao gồm đáp án và lời giải chi tiết, được tổ chức vào thứ Hai ngày 29 tháng 05 năm 2023. Trong đề tuyển sinh, có các câu hỏi như sau: Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x^2, đường thẳng (d) có phương trình y = 2x + m^2 – 4m + 9 (với m là tham số) và đường thẳng (delta) có phương trình y = (a − 3)x + 4 (với a là tham số). Hãy tìm a để đường thẳng (d) và đường thẳng (delta) vuông góc với nhau. Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B với mọi m. Gọi A(x1;y1) và B(x2;y2) (với x1 < x2), hãy tìm tất cả các giá trị của tham số m sao cho |x1 − 2023| − |x2 + 2023| = y1 + y2 − 48. Xét đường tròn (O) và tiếp tuyến MA, MB với đường tròn từ điểm M bên ngoài. Chứng minh AECD nội tiếp đường tròn, rằng CDE = CFD, CD vuông góc IK và NC đi qua trung điểm của AB. Cho a, b, c là các số không âm thỏa mãn a + b + c = 1011. Chứng minh. Đề thi tuyển sinh chuyên môn Toán năm 2023 - 2024 sở GD&ĐT Hà Nam hứa hẹn sẽ là thách thức đầy hấp dẫn dành cho các thí sinh. Hãy cùng chuẩn bị và vững tin để vượt qua thử thách này!
Nguồn: sytu.vn