Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2017 2018 sở GD và ĐT Bắc Giang

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2017 2018 sở GD và ĐT Bắc Giang Bản PDF Đề thi HK1 Toán lớp 11 năm học 2017 – 2018 sở GD và ĐT Bắc Giang gồm 3 trang với 25 câu hỏi trắc nghiệm và 3 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi HK1 Toán lớp 11 : + Cho hình chóp S.ABCD có đáy là hình thang ABCD (AD // BC). Gọi M là trung điểm CD. Giao tuyến của hai mặt phẳng (MSB) và (SAC) là: A. SO (O là giao điểm của AC và BD). B. SJ (J là giao điểm của AM và BD). C. SI (I là giao điểm của AC và BM). D. SP (P là giao điểm của AB và CD). [ads] + Trong mặt phẳng, có bao nhiêu hình chữ nhật được tạo thành từ sáu đường thẳng đôi một song song với nhau và năm đường thẳng phân biệt cùng vuông góc với sáu đường thẳng song song đó? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J, E, F lần lượt là trung điểm SA, SB, SC, SD. Trong các đường thẳng sau, đường thẳng nào không song song với IJ?

Nguồn: sytu.vn

Đăng nhập để đọc

Đề thi học kỳ 1 Toán 11 năm 2019 - 2020 trường THPT chuyên Tiền Giang
Thứ Ba ngày 20 tháng 12 năm 2019, trường THPT chuyên Tiền Giang tổ chức kiểm tra học kỳ 1 môn Toán 11 năm học 2019 – 2020. Đề thi học kỳ 1 Toán 11 năm 2019 – 2020 trường THPT chuyên Tiền Giang (đề dành cho các lớp 11 không chuyên Toán) có mã đề 135, đề gồm 04 trang 32 câu trắc nghiệm (chiếm 8,0 điểm) và 01 bài toán tự luận (chiếm 2,0 điểm), thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán 11 năm 2019 – 2020 trường THPT chuyên Tiền Giang : + Cho tứ diện ABCD. Gọi O là một điểm bên trong tam giác BCD và M là một điểm trên đoạn AO (M khác A và O). Gọi I, J là hai điểm trên cạnh BC, BD. Giả sử IJ cắt CD tại K, BO cắt IJ tại E và cắt CD tại H, ME cắt AH tại F. Giao tuyến của hai mặt phẳng (MIJ) và (ACD) là đường thẳng nào sau đây? + Cho hình chóp S.ABCD có đáy là hình bình hành. Giao tuyến của (SAB) và (SCD) là? A. Đường thẳng qua S và song song với AD. B. Đường thẳng qua S và song song với CD. C. Đường SO với O là tâm hình bình hành. D. Đường thẳng qua S và cắt AB. [ads] + Kết quả (b;c) của việc gieo một con súc sắc cân đối, đồng chất 2 lần liên tiếp, trong đó b là số chấm xuất hiện của lần gieo thứ nhất, c là số chấm xuất hiện lần gieo thứ hai được thay vào phương trình bậc hai x^2 + bx + 2c = 0. Tính xác suất để phương trình bậc hai đó vô nghiệm. + Một người vào một nhà hàng ẩm thực, người đó chọn một thực đơn gồm 1 món ăn trong 5 món, 1 loại quả tráng miệng trong 5 loại quả tráng miệng và một loại nước uống trong 3 loại nước uống. Hỏi người đó có bao nhiêu cách chọn một thực đơn? + Gọi S là tập hợp tất cả các giá trị của m để phương trình x^4 – 2(m + 1)x^2 + 2m + 1 = 0 có bốn nghiệm phân biệt lập thành cấp số cộng. Tính tổng các phần tử của S.
Đề thi HK1 Toán 11 năm học 2019 - 2020 sở GDKHCN Bạc Liêu
Sáng thứ Sáu ngày 20 tháng 12 năm 2019, sở Giáo dục, Khoa học và Công nghệ tỉnh Bạc Liêu tổ chức kỳ thi kiểm tra chất lượng học kỳ 1 môn Toán 11 năm học 2019 – 2020. Đề thi HK1 Toán 11 năm học 2019 – 2020 sở GDKHCN Bạc Liêu mã đề 124, đề thi gồm có 03 trang với 20 câu trắc nghiệm (chiếm 6,0 điểm) và 03 câu tự luận (chiếm 4,0 điểm), học sinh làm bài trong khoảng thời gian 90 phút. Trích dẫn đề thi HK1 Toán 11 năm học 2019 – 2020 sở GDKHCN Bạc Liêu : + Trong một cuộc thi, Ban tổ chức dùng 7 cuốn sách môn Toán, 6 cuốn sách môn Vật lý và 5 cuốn sách môn Hóa học để làm phần thưởng cho 9 học sinh có kết quả cao nhất. Các cuốn sách cùng thể loại Toán, Vật lý, Hóa học đều giống nhau. Mỗi thí sinh nhận thưởng sẽ được hai cuôn sách khác thể loại, trong đó có An. Tính xác suất để An nhận thưởng có sách Toán. + Từ 20 học sinh ưu tú gồm 10 nam và 10 nữ, người ta muốn thành lập một đoàn đại biểu gồm 6 người để tham dự một buổi hội thảo, trong đó có 1 trưởng đoàn là nam và 2 phó đoàn là nữ. Hỏi có bao nhiêu cách thành lập một đoàn đại biểu như vậy? [ads] + Một.cơ sở khoan giếng đưa ra định mức giá như sau: Giá cùa mét khoan đầu tiên là 10000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 3000 đồng so với giá của mét khoan ngay trước đó. Một người muốn ký họp đồng với cơ sở khoan giếng này để khoan một giếng sâu 100 mét lấy nước dùng cho sinh hoạt của gia đình. Hỏi sau khi hoàn thành việc khoan giêng, gia đình đó phải thanh toán cho cợ sở khoan giêng sô tiên băng bao nhiêu? + Cho hình chóp S.ABCD có đáy ABCD là hình thang, với đáy lớn là AD và AD = 2BC. Tìm giao điểm của đường thẳng CD và mặt phẳng (SAB). Gọi I là điểm nằm trên cạnh SC sao cho 2SC = 3SI. Chứng minh đường thẳng SA song song với mặt phẳng (BID). + Từ một hộp chứa 7 quả cầu màu đỏ và 5 quả cầu màu vàng, Hùng lấy ngẫu nhiên đồng thời 3 quả cầu. Tính xác suất để Hùng lấy được 3 quả cầu trong đó có hai quả cầu màu đỏ.
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT chuyên Hà Nội - Amsterdam
Ngày … tháng 12 năm 2019, tổ Toán – Tin trường THPT chuyên Hà Nội – Amsterdam tổ chức kì thi kiểm tra học kì 1 môn Toán lớp 11 năm học 2019 – 2020. Đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT chuyên Hà Nội – Amsterdam gồm 4 mã đề: 072, 358, 641, 923; đề thi gồm 16 câu trắc nghiệm (chiếm 4 điểm) và 3 câu tự luận (chiếm 6 điểm), thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT chuyên Hà Nội – Amsterdam : + Trong các phép biến hình sau, phép biến hình nào không là một phép dời hình? A. Thực hiện liên tiếp hai phép quay. B. Thực hiện liên tiếp hai phép đối xứng trục. C. Thực hiện liên tiếp hai phép vị tự có cùng tâm và tỷ số vị tự là 2 số đối nhau. D. Thực hiện liên tiếp hai phép vị tự có cùng tâm và tỷ số vị tự là 2 số nghịch đảo của nhau. + Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm các cạnh AB, CD. a) Chứng minh rằng: MN song song với mặt phẳng (SBC), (SAD). b) Gọi P là trung điểm SA. Chứng minh rằng: SB, SC song song với mặt phẳng (MNP). c) Gọi G1, G2 lần lượt là trọng tâm tam giác ABC, SBC. Chứng minh rằng: đường thẳng G1G2 song song với mặt phẳng (SAC). d) Dựng thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (PNG2). [ads] + Khẳng định nào trong các khẳng định sau là đúng? A. Nếu hai đường thẳng ở trên hai mặt phẳng thì hai đường thẳng đó chéo nhau. B. Hai đường thẳng chéo nhau khi chúng không có điểm chung. C. Hai đường thẳng song song khi chúng ở trên cùng một mặt phẳng. D. Hai đường thẳng không có điểm chung là hai đường thẳng song song hoặc chéo nhau. + Cho tứ diện S.ABCD có đáy ABCD là hình thang có AB // CD. Gọi M, N và P lần lượt là trung điểm của SA, BC và AD. Giao tuyến của hai mặt phẳng (SAB) và (MNP) là? A. Đường thẳng qua S và song song với AB. B. Đường thẳng qua N và song song với SC. C. Đường thẳng qua M và song song với AB. D. Đường thẳng MN. + Trong một hộp có 10 viên bi màu xanh và 8 viên bi màu đỏ. Bạn Bình lấy ngẫu nhiên 1 viên bi (lấy xong không trả lại vào hộp), sau đó bạn An lấy tiếp 1 viên bi nữa. Tính xác suất để hai bạn lấy được bi cùng màu.
Đề thi học kỳ 1 Toán 11 năm học 2019 - 2020 sở GDĐT Vĩnh Phúc
Sáng thứ Hai ngày 16 tháng 12 năm 2019, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng học kỳ 1 môn Toán 11 năm học 2019 – 2020, nhằm đánh giá kết quả học tập môn Toán của học sinh khối 11 trong giai đoạn HK1 vừa qua. Đề thi học kỳ 1 Toán 11 năm học 2019 – 2020 sở GD&ĐT Vĩnh Phúc có mã đề 132, đề thi gồm có 2 trang với 11 câu trắc nghiệm (chiếm 30% tổng số điểm) và 7 câu tự luận (chiếm 70% tổng số điểm), thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kỳ 1 Toán 11 năm học 2019 – 2020 sở GD&ĐT Vĩnh Phúc : + Cho tứ diện đều ABCD có cạnh bằng 2a. Gọi M, N lần lượt là trung điểm các cạnh AC và BC; P là trọng tâm của tam giác BCD. a) Xác định giao tuyến của mặt phẳng (ABP) với mặt phẳng (ACD). b) Tính diện tích thiết diện của tứ diện ABCD cắt bởi mặt phẳng (MNP). + Một hộp đựng 7 viên bi màu trắng và 3 viên bi màu đen. Lấy ngẫu nhiên đồng thời 3 viên bi trong hộp đó. Tính xác suất để trong 3 viên bi được lấy ra có nhiều nhất một viên bi màu trắng. [ads] + Trong mặt phẳng tọa độ Oxy, cho hai điểm M(4;6) và M'(-3;5). Phép vị tự tâm I tỉ số k = 1/2 biến điểm M thành điểm M’. Tìm tọa độ điểm I. + Cho hình chóp S.ABCD, hai đường thẳng AC và BD cắt nhau tại điểm M, hai đường thẳng AB và CD cắt nhau tại điểm N. Giao tuyến của mặt phẳng (SAB) và mặt phẳng (SCD) là đường thẳng nào trong các đường thẳng sau đây? + Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình x + y – 2 = 0. Phép vị tự tâm O tỉ số k = -2 biến đường thẳng d thành đường thẳng nào trong các đường thẳng có phương trình sau?

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6