Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng các bài toán tích phân - Phạm Minh Tứ

Tài liệu phân dạng các bài toán tích phân của thầy giáo Phạm Minh Tứ gồm 42 trang. Các bài toán tích phân được phân loại theo phương pháp giải, các ví dụ mẫu và bài tập đều có lời giải chi tiết. Nội dung tài liệu: I. Khái niệm tích phân II. Tính chất của tích phân III. Các phương pháp tính tích phân A. Phương pháp phân tích: Trong phương pháp này, chúng ta cần: + Kỹ năng: Cần biết phân tích f(x) thành tổng, hiệu, tích, thương của nhiều hàm số khác, mà ta có thể sử dụng được trực tiếp bảng nguyên hàm cơ bản tìm nguyên hàm của chúng. + Kiến thức: Như đã trình bày trong phần “Nguyên hàm”, cần phải nắm trắc các kiến thức về Vi phân, các công thức về phép toán lũy thừa, phép toán căn bậc n của một số và biểu diễn chúng dưới dạng lũy thừa với số mũ hữu tỷ. [ads] B. Phương pháp đổi biến số I. Phương pháp đổi biến số dạng 1: Đặt x = v(t) II. Phương pháp đổi biến số dạng 2: Đặt t = u(x) Đối với tích phân hàm lượng giác ∫f(x)dx, ta có quy tắc đổi biến số sau: a. Nếu f(x) = R[(sinx)^m; (cosx)^n] thì ta chú ý: + Nếu m lẻ, n chẵn: đặt cosx = t + Nếu n lẻ, m chẵn: đặt sinx = t + Nếu m, n đều lẻ: đặt cosx = t hoặc sinx = t đều được + Nếu m, n đề chẵn: đặt tanx = t b. Phải thuộc các công thức lượng giác và các công thức biến đổi lượng giác, các hằng đẳng thức lượng giác: công thức hạ bậc, nhân đôi, nhân ba, tính theo tang góc chia đôi …. Nói chung để tính được một tích phân chứa các hàm số lượng giác, học sinh đòi hỏi phải có một số yếu tố sau: + Biến đổi lượng giác thuần thục + Có kỹ năng khéo léo nhận dạng được cách biến đỏi đưa về dạng đã biết trong nguyên hàm

Nguồn: toanmath.com

Đăng nhập để đọc

Phương pháp giải các dạng Tích phân thường gặp
Tài liệu gồm 26 trang giới thiệu và hướng dẫn phương pháp giải các dạng tích phân thường gặp, đây là các dạng tích phân thương có trong đề thi THPT Quốc gia và đề thi tuyển sinh Cao Đẳng – Đại học. Nội dung tài liệu I. CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN 1. Tính tích phân bằng định nghĩa ,tính chất và bảng nguyên hàm cơ bản 2. Phương pháp tích phân từng phần 3. Phương pháp đổi biến số + Phương pháp đổi biến dạng I + Phương pháp đổi biến dạng II 4. Phương pháp tích phân từng phần [ads] II. TÍCH PHÂN MỘT SỐ HÀM SỐ THƯỜNG GẶP 1. Tích phân hàm số phân thức 2. Tích phân các hàm lượng giác + Dạng 1: Biến đổi về tích phân cơ bản + Dạng 2: Đổi biến số để hữu tỉ hóa tích phân hàm lượng giác Dạng 3: Đổi biến số để đưa về tích phân hàm lượng giác đơn giản hơn 3. Tích phân hàm vô tỉ + Dạng 1: Biến đổi về tích phân vô tỉ cơ bản + Dạng 2: Biến đổi về tích phân hàm lượng giác + Dạng 3: Biến đổi làm mất căn 4. Tích phân chứa dấu giá trị tuyệt đối III. TÍCH PHÂN MỘT SỐ HÀM ĐẶC BIỆT
Phương pháp giải các bài toán Tích phân - Trung tâm LTĐH Vĩnh Viễn
Tài liệu gồm 33 trang hướng dẫn phương pháp giải các dạng toán tích phân, các bài toán được chọn lọc từ các đề thi tuyển sinh Cao Đẳng – Đại học. Nội dung tài liệu: Vấn đề 1: BIẾN ĐỔI VỀ TỔNG – HIỆU CÁC TÍCH PHÂN CƠ BẢN Vấn đề 2: TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ Vấn đề 3: TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN Vấn đề 4: TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP PHỐI HỢP Vấn đề 5: ỨNG DỤNG CỦA TÍCH PHÂN [ads]
Chuyên đề trắc nghiệm ứng dụng tích phân tính thể tích
Tài liệu gồm 33 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề ứng dụng tích phân tính thể tích, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. 1. Tính thể tích vật thể. 2. Tính thể tích vật tròn xoay sinh bởi diện tích S quay quanh trục Ox. 3. Tính thể tích vật tròn xoay sinh bởi diện tích S quay quanh trục Oy. 4. Ứng dụng tính thể tích khối cầu, khối chỏm cầu và một số hình đặc biệt. 5. Hệ thống Ví dụ minh họa. BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Chuyên đề trắc nghiệm ứng dụng tích phân tính diện tích
Tài liệu gồm 45 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề ứng dụng tích phân tính diện tích, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. A. LÝ THUYẾT. 1. Công thức tính diện tích của hình phẳng giới hạn bởi hai đồ thị hàm số. 2. Ứng dụng tính diện tích hình tròn và hình Elip. B. VÍ DỤ MINH HỌA. C. BÀI TẬP TỰ LUYỆN. D. LỜI GIẢI CHI TIẾT.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6