Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 12 năm 2022 - 2023 lần 1 trường THCS THPT Như Xuân - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát học sinh giỏi môn Toán 12 năm học 2022 – 2023 lần 1 trường THCS & THPT Như Xuân, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian 90 phút (không kể thời gian phát đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 12 năm 2022 – 2023 lần 1 trường THCS & THPT Như Xuân – Thanh Hóa : + Một vận động viên bắn ba viên đạn vào bia với ba lần bắn độc lập. Xác suất để vận động viên bắn trúng vòng 10 điểm là 0,15. Xác suất để vận động viên bắn trúng vòng 8 điểm là 0,2. Xác suất để vận động viên bắn trúng vòng dưới 8 điểm là 0,3. Tính xác suất để vận động viên đó được ít nhất 28 điểm (tính chính xác đến hàng phần nghìn). + Cho khối nón có độ lớn góc ở đỉnh là 3, một khối cầu S1 nội tiếp trong khối nón. Gọi S2 là khối cầu tiếp xúc với tất cả các đường sinh của nón và với S1. Gọi S3 là khối cầu tiếp xúc với tất cả các đường sinh của khối nón và với S2, tương tự với khối cầu S4 S5. Gọi 1 2 V V V3 4 5 V V lần lượt là thể tích của khối cầu S S 1 2 3 và V là thể tích của khối nón. Giá trị V V 4 5 T V gần giá trị nào sau đây (làm tròn 2 chữ số sau dấu phẩy)? + Cần phải thiết kế các thùng dạng hình trụ có nắp đậy để đựng nước sạch có dung tích 3 V cm. Hỏi bán kính R(cm) của đáy hình trụ nhận giá trị nào sau đây để tiết kiệm vật liệu nhất?

Nguồn: toanmath.com

Đăng nhập để đọc

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Đồng Nai
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Đồng Nai Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh vào đội dự tuyển thi học sinh giỏi Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Đồng Nai. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Đồng Nai : + Cho dãy số (un) thỏa mãn u1 = 1 và un + 1 = 3un + 10 với mọi số nguyên dương n. a) Tìm công thức tổng quát của dãy số (un) và tìm số dư trong phép chia up cho p với p là số nguyên tố lớn hơn 3. b) Chứng minh với số nguyên dương t > 1 tồn tại số nguyên dương s > t sao cho số ước nguyên tố của us lớn hơn 2 lần số ước nguyên tố của ut. + Cho 2024 viên bi được sắp xếp thành một hàng ngang. Tính số các cách đặt 29 chiếc thẻ vào giữa các viên bi thỏa mãn ở giữa hai viên bi kề nhau chỉ có nhiều nhất một chiếc thẻ và các viên bi đã cho được chia thành 30 phần mà mỗi phần có ít nhất 9 viên bi. + Cho 2024 viên bi giống nhau được đặt vào các đỉnh của hình đa giác đều có 2024 cạnh nội tiếp đường tròn (O), mỗi đỉnh chỉ có một viên bi. Tính số các cách đặt 29 chiếc thẻ giống nhau vào trung điểm các cạnh của đa giác đã cho thỏa mãn tại mỗi trung điểm có nhiều nhất một chiếc thẻ và các viên bi đã cho được chia thành 29 phần, mà mỗi phần có ít nhất 9 viên bi (biết hai cách đặt thẻ được coi là như nhau nếu tồn tại một phép quay quanh tâm O biến cách chia này thành cách chia kia).
Đề HSG lớp 12 môn Toán và lập đội tuyển thi HSG QG năm 2023 2024 sở GD ĐT Hà Nam
Nội dung Đề HSG lớp 12 môn Toán và lập đội tuyển thi HSG QG năm 2023 2024 sở GD ĐT Hà Nam Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán lớp 12 và thành lập đội tuyển tham dự kỳ thi chọn học sinh giỏi Quốc gia THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hà Nam. Trích dẫn Đề HSG Toán lớp 12 và lập đội tuyển thi HSG QG năm 2023 – 2024 sở GD&ĐT Hà Nam : + Cho tam giác ABC có ba góc nhọn không cân; (w) là đường tròn Euler của tam giác ABC. Gọi D, E, F lần lượt là hình chiếu vuông góc của A, B, C trên các cạnh BC, CA, AB. Kẻ tiếp tuyến tA của (w) tại D. Tiếp tuyến tA cắt đường tròn đường kính AB tại KA (KA khác D). Đường thẳng DF cắt AKA, BKA lần lượt tại LA, MA. Đường thẳng tA cắt CMA tại NA. Các điểm KB, LB, MB, NB và KC, LC, MC, NC được định nghĩa tương tự. a/ Chứng minh đường thẳng AKA song song với đường thẳng CMA. b/ Chứng minh các đường thẳng LANA, LBNB và LCNC đồng quy. + Lớp 1A có 35 học sinh, trong đó có bốn bạn Công, Minh, Đoàn, Dũng. Hỏi có tất cả bao nhiêu cách sắp xếp 35 học sinh đó thành một hàng ngang, mà trong mỗi cách sắp xếp không có ba bạn nào trong bốn bạn Công, Minh, Đoàn, Dũng đứng ở ba vị trí liên tiếp. + Một khu rừng hình tròn diện tích 367 (km2), có tất cả 18 người kiểm lâm nhiệm vụ tuần tra ở đó. Họ sử dụng thiết bị không dây để liên lạc với nhau. Biết rằng thiết bị không dây này chỉ có hiệu quả trong vòng 9 (km). Chứng minh rằng ở bất cứ thời điểm nào, luôn tồn tại hai người có thể liên lạc được với năm người khác.
Đề chọn HSG tỉnh thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Quảng Ngãi
Nội dung Đề chọn HSG tỉnh thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Quảng Ngãi Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi cấp tỉnh tham dự kỳ thi chọn học sinh giỏi Quốc gia môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Ngãi; kỳ thi được diễn ra trong hai ngày: 03/10/2023 và 04/10/2023. Trích dẫn Đề chọn HSG tỉnh thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Quảng Ngãi : + Cho số nguyên dương a. Một số nguyên dương b được gọi là số “tốt” nếu với mọi số nguyên dương n mà an >= b. Chứng minh rằng: a) Nếu b là số “tốt” thì b là số chẵn. b) Nếu b là số “tốt” thì mọi số nguyên tố không vượt quá b đều là ước của a. + Cho tam giác ABC không cân. Một đường tròn (O) đi qua B, C lần lượt cắt các đoạn thẳng AB, AC tại F, E (khác B, C). Đường tròn ngoại tiếp tam giác ABE cắt đường thẳng CF tại M, N sao cho M nằm giữa C và F. Đường tròn ngoại tiếp tam giác ACF cắt đường thẳng BE tại P, Q sao cho P nằm giữa B và E. a) Chứng minh rằng các điểm M, N, P, Q cùng thuộc một đường tròn. b) Đường thẳng qua N vuông góc với AN cắt đường thẳng BE tại R. Đường thẳng qua Q vuông góc với AQ cắt đường thẳng CF tại S. Đường thẳng SP cắt NR tại U, đường thẳng RM cắt QS tại V. Chứng minh rằng các đường thẳng MP, NQ, UV, RS đồng quy. + Người ta viết các số 1, 2, 3, 4, …, 2022, 2023 lên bảng (mỗi số đúng 1 lần) rồi tô màu ít nhất 1011 số trong các số đó theo quy luật sau: Nếu số x được tô màu thì số 2x cũng được tô màu (nếu 2x có trên bảng). Nếu hai số x, y được tô màu thì số x + y cũng được tô màu (nếu x + y có trên bảng). Gọi T là tổng tất cả các số không được tô màu trên bảng. Tìm giá trị lớn nhất của T.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Quảng Ninh
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Quảng Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển của tỉnh dự thi chọn học sinh giỏi Quốc gia môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Ninh; kỳ thi được diễn ra vào ngày 04 và 05 tháng 10 năm 2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Quảng Ninh : + Cho dãy số (un) xác định bởi u1 = 1 và un + 1. a) Chứng minh rằng u2023 > 1/2023! b) Chứng minh rằng các dãy số (un) và (nun) có giới hạn hữu hạn, tìm các giới hạn đó. + Cho tứ giác ABCD nội tiếp (O). Giả sử tia AB cắt tia DC tại E, tia BC cắt tia AD tại F, đường thẳng AC cắt đường thẳng EF tại G. Giả sử đường tròn ngoại tiếp tam giác AEG cắt lại (O) tại K khác A. a) Chứng minh rằng đường thẳng KD đi qua trung điểm I của EF. b) Giả sử đường thẳng EF lần lượt cắt đường thẳng BD, đường tròn ngoại tiếp tam giác IAC tại H, J (J khác I). Chứng minh rằng OH = OJ. + Với mỗi tập hợp hữu hạn X, ta kí hiệu |X| là số phần tử của X. a) Cho A, B là hai tập con hữu hạn khác rỗng của R. Xét tập A + B. Chứng minh rằng |A + B| ≥ |A| + |B| – 1. b) Xét tập S2023. Cho T là tập con của S2023 thỏa mãn a + b + c khác 0 với mọi (a;b;c) thuộc T3. Giá trị lớn nhất có thể của |T| là bao nhiêu?

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6