Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT lớp 11 môn Toán lần 2 năm 2018 2019 trường Yên Dũng 2 Bắc Giang

Nội dung Đề thi thử THPT lớp 11 môn Toán lần 2 năm 2018 2019 trường Yên Dũng 2 Bắc Giang Bản PDF Đề thi thử THPT Toán lớp 11 lần 2 năm 2018 – 2019 trường Yên Dũng 2 – Bắc Giang mã đề 112 gồm 25 câu trắc nghiệm và 5 câu tự luận, tỉ lệ điểm giữa trắc nghiệm và tự luận là 50:50, thời gian làm bài 90 phút, kỳ thi nhằm giúp học sinh rèn luyện thường xuyên để nâng cao năng lực Toán lớp 11, đây là kỳ thi cần thiết khi mà để thi THPT Quốc gia môn Toán ngày càng chứa nhiều nội dung Toán lớp 11. Trích dẫn đề thi thử THPT Toán lớp 11 lần 2 năm 2018 – 2019 trường Yên Dũng 2 – Bắc Giang : + Cho chuyển động thẳng có phương trình theo thời gian t(s) là s(t) = 3t + 5 (m). Mệnh đề nào sau đây đúng? A. Chuyển động đã cho là chuyển động đều. B. Chuyển động đã cho không là chuyển động đều. C. Chuyển động đã cho là chuyển động nhanh dần đều. D. Chuyển động đã cho là chuyển động chậm dần đều. [ads] + Cho 4 mệnh đề sau : (1) Ba vectơ đồng phẳng khi và chỉ khi giá của chúng cùng song song với một mặt phẳng. (2) Ba vectơ đồng phẳng khi và chỉ khi giá của chúng cùng nằm trên một mặt phẳng. (3) OA, OB, OC đồng phẳng khi và chỉ khi O, A, B, C đồng phẳng. (4) a, b, c đồng phẳng khi và chỉ khi tồn tại m, n, p sao cho ma + nb + pc = 0. Số mệnh đề SAI là? + Chọn ngẫu nhiên 3 số nguyên dương nhỏ hơn 101. Tính xác suất để chọn được 3 số mà 3 số đó có thể lập thành một cấp số cộng. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đăng nhập để đọc

Đề khảo sát Toán 11 lần 2 năm 2019 - 2020 trường THPT Lý Thường Kiệt - Bắc Ninh
Ngày … tháng 05 năm 2020, trường THPT Lý Thường Kiệt, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra khảo sát chất lượng môn Toán lớp 11 lần thứ hai năm học 2019 – 2020. Đề khảo sát Toán 11 lần 2 năm học 2019 – 2020 trường THPT Lý Thường Kiệt – Bắc Ninh mã đề 110 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Ma trận đề khảo sát Toán 11 lần 2 năm 2019 – 2020 trường THPT Lý Thường Kiệt – Bắc Ninh:Nội dungNhận biếtThông hiểuVận dụng thấpVận dụng caoTổngHàm số lượng giác2 câu0 câu1 câu0 câu0,6 điểmPhương trình lượng giác3 câu2 câu0 câu1 câu1,2 điểmĐại số tổ hợp – Xác suất1 câu2 câu2 câu1 câu1,2 điểmDãy số – Cấp số cộng – Cấp số nhân2 câu1 câu2 câu1 câu1,2 điểmGiới hạn – Hàm số liên tục5 câu3 câu0 câu1 câu1,8 điểmĐạo hàm3 câu2 câu1 câu0 câu1,2 điểmPhép biến hình3 câu2 câu0 câu0 câu0,8 điểmHình học không gian1 câu3 câu4 câu1 câu1,4 điểmTổng20 câu15 câu10 câu5 câu10 điểm
Đề khảo sát lần 3 Toán 11 năm 2019 - 2020 trường Nguyễn Đăng Đạo - Bắc Ninh
Ngày … tháng 05 năm 2020, trường THPT Nguyễn Đăng Đạo, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng môn Toán 11 năm học 2019 – 2020 lần thi thứ ba. Đề khảo sát lần 3 Toán 11 năm học 2019 – 2020 trường THPT Nguyễn Đăng Đạo – Bắc Ninh mã đề 178, đề được biên soạn theo dạng trắc nghiệm 100% với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 2 năm học 2019 – 2020. Trích dẫn đề khảo sát lần 3 Toán 11 năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh : + Một người bắt đầu đi làm được nhận được số tiền lương là 7 000000 đồng/tháng. Hằng tháng người đó tiết kiệm 20% lương để gửi vào ngân hàng với lãi suất 0,3% / tháng theo hình thức lãi kép (nghĩa là lãi của tháng này  được nhập vào vốn của tháng kế tiếp). Biết rằng người đó nhận lương vào đầu tháng và số tiền tiết kiệm được chuyển ngay vào ngân hàng. Hỏi sau 36 tháng tổng số tiền người đó tiết kiệm được (cả vốn lẫn lãi) là bao nhiêu? (làm tròn đến hàng nghìn) A. 53298000 (đồng). B. 53296000 (đồng). C. 53290000 (đồng). D. 53297 000 (đồng). [ads] + Gọi A và B là hai biến cố của cùng một phép thử. Trong các mệnh đề sau, có bao nhiêu mệnh đề đúng? i) Nếu A và B xung khắc thì P(A) + P(B) = 1. ii) Nếu A và B độc lập thì P(A).P(B) = P(A.B). iii) Nếu A và B đối nhau thì P(A ∪ B) = P(A) + P(B). + Trong các mệnh đề sau, có bao nhiêu mệnh đề đúng? i) Hai đường thẳng cùng vuông góc với một mặt phẳng thì song song với nhau. ii) Hai mặt phẳng cùng vuông góc với một đường thẳng thì song song với nhau. iii) Nếu đường thẳng a vuông góc với mặt phẳng (P) thì nó vuông góc với mọi đường thẳng trong mặt phẳng (P). iv) Nếu đường thẳng a vuông góc với hai đường thẳng phân biệt trong mặt phẳng (P) thì a vuông góc với (P).
Đề thi KSCL Toán 11 lần 3 năm 2019 - 2020 trường THPT Nguyễn Viết Xuân - Vĩnh Phúc
Ngày … tháng 05 năm 2020, trường THPT Nguyễn Viết Xuân, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 11 năm học 2019 – 2020 lần thi thứ ba, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 2 (HK2). Đề thi KSCL Toán 11 lần 3 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc mã đề 075 gồm có 08 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi KSCL Toán 11 lần 3 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc : + Tìm mệnh đề đúng trong các mệnh đề sau? A. Nếu ba đường thẳng không cùng nằm trong một mặt phẳng và đôi một cắt nhau thì ba đường thẳng đó cùng song song với một mặt phẳng. B. Nếu ba đường thẳng không cùng nằm trong một mặt phẳng và đôi một cắt nhau thì ba đường thẳng đó tạo thành một tam giác. C. Nếu ba đường thẳng không cùng nằm trong một mặt phẳng và đôi một cắt nhau thì ba đường thẳng đó đồng quy. D. Nếu ba đường thẳng không cùng nằm trong một mặt phẳng và đôi một cắt nhau thì ba đường thẳng đó trùng nhau. + Trong các mệnh đề sau đây, mệnh đề nào đúng? A. Nếu đường thẳng a vuông góc với đường thẳng b và đường thẳng b song song với đường thẳng c thì a vuông góc với c. B. Cho hai đường thẳng a, b song song với nhau. Nếu một đường thẳng c vuông góc với a thì c phải cắt b. C. Cho ba đường thẳng a, b, c vuông góc với nhau từng đôi một. Nếu có một đường thẳng d vuông góc với a thì d song song với b hoặc c. D. Nếu đường thẳng a vuông góc với đường thẳng b và đường thẳng b vuông góc với đường thẳng c thì a vuông góc với c. + Một quả bóng cao su được thả từ độ cao 125m . Mỗi lần chạm đất, quả bóng lại nảy lên bốn phần lăm độ cao của lần rơi trước đó. Tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa bằng?
Đề ôn tập Toán 11 tháng 03 năm 2020 trường THPT chuyên Hà Nội Amsterdam
Do ảnh hưởng của tình hình dịch bệnh vi-rút Corona (COVID-19), học sinh khối 11 trường THPT chuyên Hà Nội – Amsterdam vẫn chưa thể đi học trở lại từ sau kỳ nghỉ lễ Tết Nguyên Đán 2020, điều này ảnh hưởng lớn đến việc tiếp thu kiến thức môn Toán 11. Để giúp các em có thể tự ôn tập tại nhà, tổ Toán – Tin học trường THPT chuyên Hà Nội – Amsterdam đã biên soạn bộ đề ôn tập môn Toán 11 giai đoạn tháng 03 năm 2020. Đề ôn tập Toán 11 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam gồm có 07 trang với 03 đề, chọn lọc các câu hỏi trắc nghiệm và tự luận từ cơ bản đến nâng cao giúp học sinh khối 11 tự ôn luyện. Trích dẫn đề ôn tập Toán 11 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam : + Tìm mệnh đề sai trong các mệnh đề sau: A. Một hình bình hành có thể là hình chiếu song song của một hình thang nào đó. B. Một hình bình hành có thể xem là hình chiếu song song của một hình vuông nào đó. C. Một tam giác có thể là hình chiếu song song của tam giác đều nào đó. D. Một đoạn thẳng có thể là hình chiếu song song của tam giác nào đó. [ads] + Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi G là trọng tâm của tam giác ABC. a) Xác định giao điểm I của A’G với mặt phẳng (AB’C’)? Tính IA’:IG? b) Gọi (P) là mặt phẳng qua G và song song với mặt phẳng (AB’C’). Xác định thiết diện của hình lăng trụ bị cắt bởi mặt phẳng (P)? c) Biết tam giác AB’C’ là tam giác đều cạnh a, tính diện tích thiết diện ở trên? d) Gọi (d) và (d’) lần lượt là giao tuyến của mp (P) với mp (ABB’A’) và mp (ACC’A’). Chứng minh rằng d, d’, AA’ đồng qui. + Cho hình chóp tứ giác đều S.ABCD đỉnh S, cạnh đáy của hình chóp có độ dài bằng 2, chiều cao bằng h. Gọi C1(O; r) là hình cầu tâm O bán kính r nội tiếp hình chóp; gọi C2(K; R) là hình cầu tâm K bán kính R tiếp xúc với 8 cạnh của hình chóp. Biết rằng khoảng cách từ O đến mặt phẳng (ABCD) bằng khoảng cách từ K đến mặt phẳng (ABCD). 1. Chứng minh rằng r = (√(1 + h^2) − 1)/h. 2. Tính giá trị của h, từ đó suy ra thể tích của hình chóp.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6