Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT thành phố Thái Nguyên

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND thành phố Thái Nguyên, tỉnh Thái Nguyên; đề thi hình thức tự luận với 05 bài toán, thời gian làm bài 150 phút. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT thành phố Thái Nguyên : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = (m – 2)x + 3 (m khác 2). Tìm tất cả các giá trị của tham số m để đường thẳng (d) cắt Ox tại điểm A, cắt Oy tại điểm B sao cho ABO = 30 độ. + Cho nửa đường tròn tâm O, đường kính AB, điểm M di động trên nửa đường tròn đó (M khác A, M khác B). Gọi điểm H là hình chiếu vuông góc của điểm M trên đường thẳng AB. Vẽ đường tròn đường kính AH, đường tròn đường kính BH. Đường thẳng MA cắt đường tròn đường kính AH tại điểm E (E khác A). Đường thẳng MB cắt đường tròn đường kính BH tại điểm F (F khác B). a. Chứng minh ME.MA = MF.MB. b. Gọi K, G lần lượt là hai điểm đối xứng của điểm H qua các đường thẳng MA, MB. Chứng minh ba điểm M, K, G thẳng hàng. c. Chứng minh MH3 = AB.AE.BF. d. Gọi I, J lần lượt là tâm của đường tròn đường kính AH và BH. Cho AB = 2R. Xác định vị trí của điểm M để diện tích tứ giác IEFJ đạt giá trị lớn nhất. Tính giá trị đó theo R. + Cho số tự nhiên n bất kỳ. Tìm tất cả các số nguyên tố p sao cho số A = 2026n2 + 1014(n + p) luôn viết được dưới dạng hiệu của hai số chính phương.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề chọn đội tuyển thi HSG tỉnh lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Yên Thành Nghệ An
Nội dung Đề chọn đội tuyển thi HSG tỉnh lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Yên Thành Nghệ An Bản PDF - Nội dung bài viết Đề chọn đội tuyển thi HSG tỉnh lớp 9 môn Toán năm 2022 - 2023 phòng GD&ĐT Yên Thành, Nghệ An Đề chọn đội tuyển thi HSG tỉnh lớp 9 môn Toán năm 2022 - 2023 phòng GD&ĐT Yên Thành, Nghệ An Xin chào quý thầy cô và các bạn học sinh lớp 9! Để chuẩn bị cho kì thi học sinh giỏi cấp tỉnh môn Toán năm học 2022 - 2023 tại phòng Giáo dục và Đào tạo huyện Yên Thành, tỉnh Nghệ An, Sytu xin giới thiệu đến các bạn đề thi chọn đội tuyển. Đề thi bao gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 150 phút (không tính thời gian giao đề). Đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích đoạn từ Đề chọn đội tuyển thi HSG tỉnh Toán lớp 9 năm 2022 - 2023 phòng GD&ĐT Yên Thành - Nghệ An: Cho tam giác ABC nhọn, các đường cao BE và CF cắt nhau tại H. Trên tia đối của tia EB lấy điểm P, trên tia đối của tia FC lấy điểm Q sao cho APC = AQB = 90°. a) Chứng minh: APQ cân tại A b) Gọi I là trung điểm của BC. Đường thẳng qua H và vuông góc với HI cắt AB, AC lần lượt tại M và N. Chứng minh: HM = HN c) Gọi O là giao điểm các đường phân giác của ABC. Chứng minh. Cho hình chữ nhật và 2022 đường thẳng. Mỗi đường thẳng đều cắt hai cạnh đối diện của hình chữ nhật và chia hình chữ nhật thành hai tứ giác có tỉ lệ diện tích là 2022 : 2023. Chứng minh rằng trong số 2022 đường thẳng trên có ít nhất 506 đường thẳng cùng đi qua một điểm. Hãy cùng nhau tiếp tục rèn luyện và giải quyết các bài toán thú vị này để chuẩn bị tốt nhất cho kỳ thi sắp tới. Chúc quý thầy cô và các em học sinh thành công!
Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Hoàng Mai Nghệ An
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Hoàng Mai Nghệ An Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 năm 2022-2023 phòng GD&ĐT Hoàng Mai Nghệ An Đề thi học sinh giỏi Toán lớp 9 năm 2022-2023 phòng GD&ĐT Hoàng Mai Nghệ An Các em học sinh lớp 9 thân mến, Sytu xin giới thiệu đến quý thầy cô và các bạn đề thi chọn học sinh giỏi cấp thị xã môn Toán lớp 9 năm học 2022-2023 của phòng Giáo dục và Đào tạo thị xã Hoàng Mai, tỉnh Nghệ An. Trích dẫn một số câu hỏi trong đề thi: 1. Cho tam giác ABC có 3 góc nhọn, vẽ đường cao AD và BE. Gọi H là trực tâm của tam giác ABC. a) Chứng minh: AD.DH = DB.DC và tanB.tanC = AD/HD. b) Chứng minh rằng các đường thẳng MI luôn đi qua một điểm cố định khi M là điểm di động trên đoạn thẳng BC và I là giao điểm của các đường thẳng CH và BK. 2. Cho tam giác ABC vuông cân tại A và M là điểm di động trên đường thẳng BC (M khác B, C). Hình chiếu của M trên các đường thẳng AB và AC tương ứng là H và K. Gọi I là giao điểm các đường thẳng CH và BK. Chứng minh rằng các đường thẳng MI luôn đi qua một điểm cố định. 3. Cho tam giác ABC có độ dài các cạnh là a, b, c sao cho thỏa mãn hệ thức 20bc + 11ac + 1982ab = 2022. Tìm giá trị nhỏ nhất của biểu thức M (trong đó p là nửa chu vi tam giác ABC). Chúc các em học sinh tham gia đề thi đạt kết quả cao, hãy tự tin và cố gắng hết mình để giải quyết các bài toán thú vị này!
Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Củ Chi TP HCM
Nội dung Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Củ Chi TP HCM Bản PDF - Nội dung bài viết Đề học sinh giỏi môn Toán lớp 9 năm 2022 - 2023 Đề học sinh giỏi môn Toán lớp 9 năm 2022 - 2023 Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay chúng ta sẽ cùng tìm hiểu về đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2022 - 2023 do phòng Giáo dục và Đào tạo huyện Củ Chi, thành phố Hồ Chí Minh tổ chức. Kỳ thi sẽ diễn ra vào thứ Sáu, ngày 12 tháng 11 năm 2022. Đề thi bao gồm các bài toán thú vị như sau: 1. Cho hình vuông ABCD có AB = a, P và Q lần lượt là thuộc các cạnh AB, AD sao cho PCQ = 45°. Chứng minh rằng chu vi APQ = 2a. 2. Cho ABC vuông tại A (AB < AC), đường cao AH, phân giác AD. Trên AC lấy E sao cho AE = AB, BE cắt AH tại I. Chứng minh các điều kiện được đề bài yêu cầu. 3. Cho ABC cân tại A (A nhọn), H là trực tâm. Gọi E là trung điểm của AC. Lấy D trên BC sao cho BC = 3.CD. Chứng minh rằng BE vuông góc HD. Hy vọng đề thi sẽ giúp các em rèn luyện kỹ năng giải bài toán, nâng cao kiến thức và chuẩn bị tốt cho cuộc thi sắc sảo sắc màu sắc đỉnh cao sắc thuộc huyện Củ Chi này. Chúc các em thành công!
Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Thanh Trì Hà Nội
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Thanh Trì Hà Nội Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 năm học 2022 - 2023 phòng GD&ĐT Thanh Trì Hà Nội Đề thi học sinh giỏi Toán lớp 9 năm học 2022 - 2023 phòng GD&ĐT Thanh Trì Hà Nội Chào mừng quý thầy, cô giáo và các em học sinh lớp 9, dưới đây là đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Thanh Trì, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào sáng thứ Ba ngày 15 tháng 11 năm 2022. Trích dẫn một số câu hỏi từ Đề học sinh giỏi Toán lớp 9 năm 2022 - 2023 phòng GD&ĐT Thanh Trì - Hà Nội: 1. Tìm tất cả số nguyên tố p có dạng p = a^2 + b^2 + c^2 với a, b, c là các số nguyên dương thỏa mãn (a^4 + b^4 + c^4) chia hết cho p. 2. Cho hình vuông MNPQ. Gọi A là điểm bất kì trên cạnh PQ (điểm A không trùng với hai điểm P, Q). Đường thẳng MA cắt đường thẳng NP tại điểm B. Qua M vẽ đường thẳng vuông góc với MA, cắt đường thẳng PQ tại C. Câu hỏi đưa ra các yêu cầu về tỉ lệ các đoạn thẳng trong hình vuông. 3. Bên trong hình vuông có cạnh bằng 1 lấy n điểm phân biệt. Chứng minh rằng tồn tại một tam giác có đỉnh là đỉnh của hình vuông hoặc n điểm đó sao cho diện tích tam giác đó thỏa mãn một bất đẳng thức cụ thể. Hy vọng rằng đề thi này sẽ giúp các em học sinh rèn luyện và phát triển kỹ năng Toán của mình. Chúc quý thầy, cô giáo và các em học sinh thành công trong kỳ thi!

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6