Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Ninh Thuận

Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Ninh Thuận Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán THCS Ninh Thuận 2022-2023 Đề thi học sinh giỏi Toán THCS Ninh Thuận 2022-2023 Chào đón quý thầy cô và các em học sinh lớp 9! Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022-2023 của Sở Giáo dục và Đào tạo tỉnh Ninh Thuận sắp diễn ra vào ngày 11 tháng 03 năm 2023. Đề thi sẽ đặt ra những câu hỏi thú vị và thách thức, như việc tìm số tự nhiên nhỏ nhất thỏa điều kiện đặc biệt, hoặc chứng minh một điều kiện toán học. Ví dụ, bạn có thể phải chứng minh rằng tổng bình phương của ba số a, b, c luôn lớn hơn tích của chúng, hoặc giải một bài toán về tam giác đều với điểm di chuyển trên cạnh. Đề thi cũng có thể yêu cầu bạn vẽ hình và suy luận logic để tìm ra đáp án chính xác. Hãy chuẩn bị kỹ lưỡng và thực hành nhiều để đối phó tốt với những thách thức toán học phía trước. Chúc quý thầy cô và các em học sinh thuận lợi và thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đăng nhập để đọc

Đề HSG Toán 9 cấp huyện năm 2022 - 2023 phòng GDĐT Đoan Hùng - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Đoan Hùng, tỉnh Phú Thọ; đề thi hình thức 40% trắc nghiệm + 60% tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 9 cấp huyện năm 2022 – 2023 phòng GD&ĐT Đoan Hùng – Phú Thọ : + Cho tam giác đều ABC nội tiếp đường tròn (O), gọi H là trung điểm của cạnh BC, M là điểm bất kỳ thuộc đoạn BH (M khác B). Lấy điểm N thuộc đoạn thẳng CA sao cho CN BM. Gọi I là trung điểm của MN. a) Chứng minh rằng bốn điểm OM H I cùng thuộc một đường tròn. b) Gọi P là giao điểm của OI và AB. Chứng minh rằng tam giác MNP đều. c) Xác định vị trí điểm M để tam giác IAB có chu vi nhỏ nhất. + Một chiếc đu quay có bán kính 75m, tâm của vòng quay ở độ cao 90m, thời gian thực hiện mỗi vòng quay của đu quay là 30 phút. Nếu một người vào cabin tại vị trí thấp nhất của vòng quay, thì sau 20 phút quay, người đó ở độ cao bao nhiêu mét? + Cho P x là một đa thức bậc n với hệ số nguyên, n ≥ 2. Biết P P 1 2 2023. Chứng minh rằng phương trình P x 0 không có nghiệm nguyên.
Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Lạng Sơn
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lạng Sơn; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Lạng Sơn : + Cho tam giác ABC nhọn, nội tiếp (O), AB < AC. Phân giác trong của BAC cắt BC tại D và cắt (O) tại điểm thứ hai P. Gọi M là giao điểm của OP và BC; F đối xứng với D qua M. Lấy điểm H nằm trên AO và E nằm trên AD sao cho HD; FE cùng vuông góc với BC. a. Chứng minh rằng AHD và PFE là các tam giác cân. b. Gọi K là giao điểm của HD và FP. Chứng minh rằng tứ giác BHCK nội tiếp trong một đường tròn (O1). c. Gọi T là giao điểm của (O1) và tia DA. Gọi Q là giao điểm của HT và BC. Chứng minh rằng AQ là tiếp tuyến của (O). + Tìm các số nguyên dương x, y, z thỏa mãn: 3x² – 9y² + 4z² + 6y²z² = 243. + Cho một đa giác đều có 2023 đỉnh. Đánh dấu các đỉnh của đa giác bằng một trong hai chữ số 0 và 1. Chứng minh rằng luôn chọn ra được ba đỉnh của đa giác được đánh dấu giống nhau và tạo thành một tam giác cân.
Đề HSG Toán 9 cấp huyện năm 2022 - 2023 phòng GDĐT Thanh Sơn - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Thanh Sơn, tỉnh Phú Thọ; đề thi hình thức 40% trắc nghiệm + 60% tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 9 cấp huyện năm 2022 – 2023 phòng GD&ĐT Thanh Sơn – Phú Thọ : + Cho tam giác ABC vuông tại A có đường cao AH. Qua B vẽ đường thẳng vuông góc với BC cắt đường thẳng AC tại D. Tia phân giác của góc C cắt AB tại N và BD tại M. Hệ thức nào sau đây đúng? + Sau buổi sinh hoạt ngoại khóa, nhóm của Hằng rủ nhau đi ăn kem. Do quán mới khai trương nên có khuyến mại, bắt đầu từ ly kem thứ 5 giá mỗi ly kem được giảm 1500 (đồng) so với giá ban đầu. Nhóm của Hằng mua 9 ly kem với số tiền là 154 500 (đồng). Hỏi nếu nhóm của Hằng mua 15 ly kem thì hết bao nhiêu tiền? + Cho tam giác ABC nhọn, nội tiếp đường tròn (O; R), đường kính AK. Các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng EF cắt đường tròn (O) tại hai điểm P, Q (P và C nằm khác phía đối với AB). Gọi M là trung điểm của BC. a) Chứng minh: Tứ giác BHCK là hình bình hành và OAC BAH. b) Chứng minh: 2 2 AP AQ 2AD OM. c) Khi BC cố định và A di động trên đường tròn (O). Chứng minh đường thẳng đi qua H và song song với AO luôn đi qua một điểm cố định.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Vũng Tàu - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND thành phố Vũng Tàu, tỉnh Bà Rịa – Vũng Tàu. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Vũng Tàu – BR VT : + Xét các số thực dương a, b thay đổi thỏa mãn a + b = ab. Tìm giá trị nhỏ nhất của biểu thức P = 7/4.a + 5/4.b + 4/a + 2/b. + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ đường cao AD của tam giác ABC và đường kính AK của đường tròn (O). Gọi H là trực tâm tam giác ABC và M là trung điểm đoạn thẳng BC. Tia MH cắt (O) tại E, tia ED cắt (O) tại S. 1. Chứng minh ba điểm H, M, K thẳng hàng và tứ giác AMDE nội tiếp. 2. Chứng minh AB/AC = SB/SC. 3. Tia SM cắt (O) tại T. Chứng minh tứ giác ABCT là hình thang cân. 4. Chứng minh các đường thẳng DT, AM, HO đồng quy. + Cho 2024 phân số gồm 1/2024; 2/2024 … 2024/2024. Mỗi lần thực hiện ta xoá đi hai số a; b bất kỳ trong dãy trên và thay vào đó số a + b – 4ab. Cứ làm như vậy đến khi còn duy nhất một số. Hãy tìm số đó.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6