Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh lớp 10 năm 2019 2020 trường chuyên Thái Bình (Vòng 1)

Ngày 25 tháng 05 năm 2019, trường THPT chuyên Thái Bình, trực thuộc sở Giáo dục và Đào tạo tỉnh Thái Bình tổ chức kỳ thi Toán tuyển sinh vào lớp 10 khối THPT năm học 2019 – 2020. THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề Toán tuyển sinh lớp 10 năm 2019 – 2020 trường chuyên Thái Bình (Vòng 1), đề thi chung được dành cho toàn bộ các thí sinh tham gia kỳ thi, đề thi gồm 1 trang, đề được biên soạn theo dạng đề tự luận với 6 bài toán, học sinh làm bài trong khoảng thời gian 120 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. [ads] Trích dẫn đề Toán tuyển sinh lớp 10 năm 2019 – 2020 trường chuyên Thái Bình (Vòng 1) : + Hai lớp 9A và 9B của một trường quyên góp sách ủng hộ. Trung bình mỗi bạn lớp 9A ủng hộ 5 quyển, mỗi bạn lớp 9B ủng hộ 6 quyển nên cả hai lớp ủng hộ 493 quyển. Tính số học sinh mỗi lớp biết tổng số học sinh của hai lớp là 90. + Trên mặt phẳng tọa độ Oxy, cho hai đường thẳng (d1): y = (m^2 + 1)x^2 – 2m và (d2): y = (m + 3)x – m – 2 (m là tham số). 1. Tìm m để (d1) song song với (d2). 2. Chứng minh: với mọi m đường thẳng (d2) luôn đi qua một điểm cố định. 3. Tìm m để (d1), (d2) cắt nhau tại M(xM;yM) thỏa mãn A = 2020xM(yM + 2) đạt giá trị nhỏ nhất. + Xét các số thực a, b, c (a khác 0) sao cho phương trình bậc hai ax^2 + bx + c = 0 có hai nghiệm m, n thỏa mãn: 0 ≤ m ≤ 1; 0 ≤ n ≤ 1. Tìm giá trị nhỏ nhất của biểu thức: Q = (2a^2 – ac – 2ab + bc)/(a^2 – ab + ac).

Nguồn: toanmath.com

Đăng nhập để đọc

Đề tuyển sinh lớp 10 không chuyên môn Toán năm 2022 - 2023 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT không chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi gồm 08 câu trắc nghiệm (02 điểm) và 05 câu tự luận (08 điểm), thời gian học sinh làm bài thi là 120 phút (không kể thời gian phát đề). Trích dẫn đề tuyển sinh lớp 10 không chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Nam Định : + Cho tam giác ABC vuông cân tại A có AB = AC = 4cm. Kẻ đường cao AH của tam giác ABC và vẽ cung tròn (A;AH) cắt AB, AC lần lượt tại D, E (hình vẽ bên). Tính diện tích phần tô đậm trong hình vẽ bên. + Cho đường tròn (O) và điểm A nằm bên ngoài đường tròn. Từ A kẻ các tiếp tuyến AM, AN với đường tròn (O) (M và N là các tiếp điểm). Một đường thẳng đi qua A cắt đường tròn (O) tại hai điểm P, Q sao cho P nằm giữa A và Q, dây cung PQ không đi qua tâm O. Gọi I là trung điểm của đoạn PQ, J là giao điểm của hai đường thẳng AQ và MN. Chứng minh rằng: a) Năm điểm A, M, O, I, N cùng nằm trên một đường tròn và JIM = JIN. b) Tam giác AMP đồng dạng với tam giác AQM và AP.AQ = AI.AJ. + Cho x, y, z là các số thực dương thay đổi. Tìm giá trị lớn nhất của biểu thức P = (x + y – z)(y + z – x)(z + x – y) – xyz.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Bắc Ninh; đề thi mã đề 482 gồm 20 câu trắc nghiệm (04 điểm – 30 phút) và 04 câu tự luận (06 điểm – 06 phút); đề thi có đáp án và lời giải chi tiết (hướng dẫn được thực hiện bởi tác giả DUC PV). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Bắc Ninh : + Một người đi xe đạp từ A đến B cách nhau 15km. Khi từ B về A người đó tăng vận tốc thêm 3km/h. Vì vậy, thời gian về ít hơn thời gian đi là 15 phút. Tính vận tốc của người đi xe đạp khi đi từ A đến B. + Cho đường tròn (O; R) và dây MN cố định (MN < 2R). Kẻ đường kính AB vuông góc với dây MN tại E. Lấy điểm C thuộc dây MN (C khác M, N, E). Đường thẳng BC cắt đường tròn (O; R) tại điểm K (K khác B). a) Chứng minh AKCE là tứ giác nội tiếp. b) Chứng minh BM2 = BK.BC. Gọi I là giao điểm của hai đường thẳng AK và MN; D là giao điểm của hai đường thẳng AC và BI. Chứng minh C cách đều ba cạnh của 4DEK. + Chứng minh rằng nếu tất cả các cạnh của một tam giác nhỏ hơn 2 thì diện tích của tam giác đó nhỏ hơn √3.
Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2022 - 2023 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (chung) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 14 – 16/06/2022. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2022 – 2023 sở GD&ĐT Quảng Nam : + Xác định tất cả các giá trị của tham số m để phương trình x2 – 2mx + m2 + m – 3 = 0 có hai nghiệm phân biệt x1 và x2 sao cho |x1 – x2| = m. + Cho đường tròn (O) có đường kính AB. Trên đường tròn (O) lấy điểm E (khác B) sao cho tiếp tuyến của (O) tại E cắt tia AB tại điểm C. Gọi d là đường thẳng vuông góc với đường thẳng AB tại C, D là giao điểm của đường thẳng AE và đường thẳng d, F là giao điểm thứ hai của đường thẳng BD và đường tròn (O). a) Chứng minh tứ giác BCDE nội tiếp đường tròn. b) Chứng minh EF song song với đường thẳng d. c) Gọi I là giao điểm của BE và CF, H là giao điểm của EF và AB. Chứng minh BC.IF = 2IC.BH. + Cho ba số thực dương a, b, c thỏa mãn a + b + c = 2. Tìm giá trị lớn nhất của biểu thức Q.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT TP Hồ Chí Minh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh; kỳ thi được diễn ra vào chiều Chủ Nhật ngày 12 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT TP Hồ Chí Minh : + Cho hình vuông ABCD. Trên các cạnh BC và CD lần lượt lấy các điểm M và N sao cho MAN = 45°. a) Chứng minh MN tiếp xúc với đường tròn tâm A bán kính AB. b) Kẻ MP song song với AN (P thuộc đoạn AB) và kẻ NQ song song với AM (Q thuộc đoạn AD). Chứng minh AP = AQ. + Cho tam giác ABC nhọn (AB < AC) có các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng EF cắt đường thẳng BC tại I. Đường thẳng qua A vuông góc với IH tại K và cắt BC tại M. a) Chứng minh tứ giác IFKC nội tiếp b) Chứng minh M là trung điểm của BC. + Số nguyên dương n được gọi là “số tốt” nếu n + 1 và 8n + 1 đều là các số chính phương. a) Hãy chỉ ra ví dụ ba “số tốt” lần lượt có 1, 2, 3 chữ số. b) Tìm các số nguyên k thỏa mãn |k| =< 10 và 4n + k là hợp số với mọi n là “số tốt”.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6