Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số kỹ thuật giải bất phương trình

Tài liệu gồm 06 trang, được biên soạn bởi các tác giả: Huỳnh Nguyễn Luân Lưu và Nguyễn Thị Duy An (Trung tâm Thăng Long, thành phố Hồ Chí Minh), hướng dẫn một số kỹ thuật giải bất phương trình. Tài liệu được đăng tải trên tạp chí Toán học và Tuổi trẻ số 539 xuất bản tháng 5 năm 2022. Ở học kì II năm lớp 10 các em học sinh có học về bất phương trình (BPT). Đây là dạng toán đòi hỏi kỹ năng tính toán phải tốt. Hơn nữa, nếu chúng ta không nắm vững một số kỹ thuật thì khi giải ta sẽ làm cho bài toán phức tạp thêm. Trong bài viết này chúng tôi xin giới thiệu đến các em một chuyên đề nhỏ này về cách giải một số bất phương trình. 1. Kỹ thuật đặt ẩn phụ. 2. Kỹ thuật ẩn phụ không hoàn toàn. 3. Kỹ thuật nhân lượng liên hợp có đánh giá. 4. Kỹ thuật dùng hàm số để giải. BÀI TẬP TỰ LUYỆN.

Nguồn: toanmath.com

Đăng nhập để đọc

Tài liệu tự học bất đẳng thức và bất phương trình - Trần Quốc Nghĩa
Nhằm giúp các em học sinh khối lớp 10 học tốt chương trình Đại số 10 chương 4, giới thiệu đến các em tài liệu tự học bất đẳng thức và bất phương trình do thầy Trần Quốc Nghĩa biên soạn. Tài liệu gồm 108 trang với đầy đủ lý thuyết, dạng toán và bài tập các chủ đề: bất đẳng thức, GTLN – GTNN (min – max), dấu của nhị thức bậc nhất, dấu của tam thức bậc hai, bất phương trình, hệ bất phương trình. Khái quát nội dung tài liệu tự học bất đẳng thức và bất phương trình – Trần Quốc Nghĩa: PHẦN 1 . BẤT ĐẲNG THỨC CHỦ ĐỀ 1 . BẤT ĐẲNG THỨC + Dạng 1. Chứng minh bất đẳng thức dựa vào định nghĩa và tính chất. + Dạng 2. Chứng minh bất đẳng thức dựa vào bất đẳng thức Cauchy (AM – GM). + Dạng 3. Chứng minh bất đẳng thức dựa vào bất đẳng thức Cauchy – Schwarz. + Dạng 4. Chứng minh bất đẳng thức dựa vào bất đẳng thức C.B.S. + Dạng 5. Chứng minh bất đẳng thức dựa vào tọa độ vectơ. + Dạng 6. Bất đẳng thức về giá trị tuyệt đối. + Dạng 7. Sử dụng phương pháp làm trội. + Dạng 8. Ứng dụng bất đẳng thức để giải phương trình, hệ phương trình, bất phương trình. BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 1 CHỦ ĐỀ 2 . GIÁ TRỊ LỚN NHẤT – GIÁ TRỊ NHỎ NHẤT + Dạng 1. Dùng tam thức bậc hai. + Dạng 2. Dùng bất đẳng thức Cauchy. + Dạng 3. Dùng bất đẳng thức C.B.S. + Dạng 4. Dùng bất đẳng thức chứa dấu giá trị tuyệt đối. + Dạng 5. Dùng tọa độ vectơ. BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 2 PHẦN 2 . BẤT PHƯƠNG TRÌNH VÀ HỆ BẤT PHƯƠNG TRÌNH CHỦ ĐỀ 3 . BẤT PHƯƠNG TRÌNH HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN + Dạng 1. Tìm điều kiện xác định của bất phương trình. + Dạng 2. Bất phương trình tương đương. + Dạng 3. Giải bất phương trình bậc nhất một ẩn. + Dạng 4. Giải hệ bất phương trình bậc nhất một ẩn. + Dạng 5. Bất phương trình, hệ bất phương trình bậc nhất một ẩn chứa tham số. BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 3 CHỦ ĐỀ 4 . DẤU CỦA NHỊ THỨC BẬC NHẤT BẤT PHƯƠNG TRÌNH QUI VỀ BẤT PHƯƠNG TRÌNH BẬC 1 MỘT ẨN + Dạng 1. Xét dấu biểu thức. + Dạng 2. Giải bất phương trình tích. + Dạng 3. Giải bất phương có ẩn ở mẫu. + Dạng 4. Dấu nhị thức trên một miền. + Dạng 5. Giải phương trình, bất phương trình chứa dấu giá trị tuyệt đối. BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 4 CHỦ ĐỀ 5 . BẤT PHƯƠNG TRÌNH HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN + Dạng 1. Bất phương trình bậc nhất hai ẩn. + Dạng 2. Hệ bất phương trình bậc nhất hai ẩn. + Dạng 3. Một ví dụ áp dụng vào kinh tế. BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 5 CHỦ ĐỀ 6 . DẤU CỦA TAM THỨC BẬC HAI BẤT PHƯƠNG TRÌNH BẬC HAI + Dạng 1. Xét dấu biểu thức. + Dạng 2. Giải bất phương trình bậc hai. + Dạng 3. Giải bất phương trình tích, thương. + Dạng 4. Giải hệ bất phương bậc hai. + Dạng 5. Phương trình và bất phương trình chứa dấu giá trị tuyệt đối. + Dạng 6. Phương trình và bất phương trình chứa căn thức. + Dạng 7. Bài toán chứa tham số trong phương trình và bất phương trình. BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 6 PHẦN 3 . TRÍCH ĐỀ THI ĐẠI HỌC – CAO ĐẲNG + Bất đẳng thức. + Bất phương trình có chứa giá trị tuyệt đối. + Bất phương trình có chứa căn thức.
Sử dụng hàm số thuần giải hệ chứa căn (hệ chứa căn phần 7) - Lương Tuấn Đức
Tài liệu gồm 128 trang hướng dẫn sử dụng hàm số thuần giải hệ chứa căn (hệ chứa căn phần 7), tài liệu được biên soạn bởi thầy Lương Tuấn Đức, tài liệu chủ yếu giới thiệu đến quý bạn đọc Lý thuyết giải hệ phương trình chứa căn ở cấp độ cao, trình bày chi tiết các thí dụ điển hình về hệ giải được nhờ sử dụng tổng hợp các phép thế, phép cộng đại số, đại lựợng liên hợp, sử dụng đồng bộ tính chất đơn điệu hàm số, các phép ước lượng – đánh giá – bất đẳng thức. Đây là nội dung có mức độ khó tương đối, đòi hỏi các bạn độc giả cần có kiến thức vững chắc về các phép giải phương trình chứa căn, kỹ năng biến đổi đại số và tư duy chiều sâu bất đẳng thức. Các thao tác tính toán và kỹ năng trình bày cơ bản đối với phương trình, hệ phương trình xin không nhắc lại. KIẾN THỨC CHUẨN BỊ : 1. Kỹ thuật nhân, chia đơn thức, đa thức, hằng đẳng thức. 2. Nắm vững các phương pháp phân tích đa thức thành nhân tử. 3. Nắm vững các phương pháp giải, biện luận phương trình bậc nhất, bậc hai, bậc cao. 4. Sử dụng thành thạo các ký hiệu toán học, logic (ký hiệu hội, tuyển, kéo theo, tương đương). 5. Kỹ năng giải hệ phương trình cơ bản và hệ phương trình đối xứng, hệ phương trình đồng bậc, hệ phương trình chứa căn thông thường. 6. Kỹ thuật đặt ẩn phụ, sử dụng đại lượng liên hợp, biến đổi tương đương. 7. Kiến thức nền tảng về uớc lượng – đánh giá, hàm số – đồ thị, bất đẳng thức – cực trị. [ads] NỘI DUNG CHỦ ĐẠO : KẾT HỢP SỬ DỤNG PHÉP THẾ, CỘNG ĐẠI SỐ VÀ ẨN PHỤ GIẢI HỆ PHƯƠNG TRÌNH CHỨA CĂN THỨC + PHỐI HỢP PHÉP THẾ, CỘNG ĐẠI SỐ VÀ ẨN PHỤ. + SỬ DỤNG TÍNH CHẤT ĐƠN ĐIỆU HÀM SỐ. + SỬ DỤNG KẾT HỢP ĐÁNH GIÁ – BẤT ĐẲNG THỨC. + TỔNG HỢP CÁC PHÉP GIẢI PHƯƠNG TRÌNH CHỨA CĂN. + BÀI TOÁN NHIỀU CÁCH GIẢI.
Sử dụng hàm số chặn miền giá trị giải hệ chứa căn (hệ chứa căn phần 8) - Lương Tuấn Đức
Tài liệu gồm 132 trang hướng dẫn sử dụng hàm số chặn miền giá trị giải hệ chứa căn (hệ chứa căn phần 8), tài liệu được biên soạn bởi thầy Lương Tuấn Đức, tài liệu chủ yếu giới thiệu đến quý bạn đọc Lý thuyết giải hệ phương trình chứa căn ở cấp độ cao, trình bày chi tiết các thí dụ điển hình về hệ giải được nhờ sử dụng tổng hợp các phép thế, phép cộng đại số, đại lựợng liên hợp, sử dụng đồng bộ tính chất đơn điệu hàm số có chặn miền giá trị, các phép ước lượng – đánh giá – bất đẳng thức phần tiếp theo. Đây là nội dung có mức độ khó tương đối, đòi hỏi các bạn độc giả cần có kiến thức vững chắc về các phép giải phương trình chứa căn, kỹ năng biến đổi đại số và tư duy chiều sâu bất đẳng thức. Các nội dung chủ đạo được đề cập trong tài liệu: + KẾT HỢP SỬ DỤNG PHÉP THẾ, CỘNG ĐẠI SỐ VÀ ẨN PHỤ (TIẾP THEO) GIẢI HỆ PHƯƠNG TRÌNH CHỨA CĂN THỨC. + PHỐI HỢP PHÉP THẾ, CỘNG ĐẠI SỐ VÀ ẨN PHỤ. + SỬ DỤNG TÍNH CHẤT ĐƠN ĐIỆU HÀM SỐ. + SỬ DỤNG KẾT HỢP ĐÁNH GIÁ – BẤT ĐẲNG THỨC. + TỔNG HỢP CÁC PHÉP GIẢI PHƯƠNG TRÌNH CHỨA CĂN. + BÀI TOÁN NHIỀU CÁCH GIẢI.
Sử dụng liên hợp hằng số giải phương trình chứa căn (liên hợp 2) - Lương Tuấn Đức
Tài liệu gồm 119 trang hướng dẫn sử dụng liên hợp hằng số giải phương trình chứa căn (liên hợp 2), các bài toán trong tài liệu đều được phần tích và giải chi tiết, tài liệu được biên soạn bởi thầy Lương Tuấn Đức. Phương pháp sử dụng biến đổi tương đương – nâng cao lũy thừa là một phương pháp cơ bản, đơn giản nhất, các bạn đã bước đầu làm quen thông qua 7 tiêu mục. Hầu hết các phương pháp khác đều ít nhiều quy về dạng cơ bản nâng lũy thừa, điều quan trọng là quá trình thu gọn bài toán. Tiếp tục dựa trên nền tảng ấy, mang tính kế thừa và phát huy thêm một bậc, phương pháp sử dụng Đại lượng liên hợp – Trục căn thức – Hệ tạm thời là một phương pháp mạnh và có nhiều ưu việt, có hiệu lực với nhiều lớp phương trình, bất phương trình. Tiếp theo phần 1, tài liệu này trân trọng giới thiệu và gửi tới toàn thể bạn đọc Lý thuyết sử dụng đại lượng liên hợp – trục căn thức – hệ tạm thời (phần 2). Nội dung chủ đạo là các ví dụ minh họa mở đầu cho các bài toán liên quan đến xác định nghiệm (trường hợp 1 nghiệm nguyên – nghiệm hữu tỷ), kỹ thuật liên hợp hằng số và xử lý, đánh giá phương trình hệ quả, tạm thời dừng chân với lớp bài toán chứa căn bậc hai. [ads] Các nội dung chủ đạo của tài liệu: + SỬ DỤNG ĐẠI LƯỢNG LIÊN HỢP – TRỤC CĂN THỨC – HỆ PHƯƠNG TRÌNH TẠM THỜI ĐỐI VỚI BÀI TOÁN CĂN BẬC HAI. + XÁC ĐỊNH NGHIỆM – LIÊN HỢP HẰNG SỐ. + ĐÁNH GIÁ – XỬ LÝ HỆ QUẢ SAU LIÊN HỢP. + BÀI TOÁN NHIỀU CÁCH GIẢI.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6