Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề diện tích hình chữ nhật

Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích hình chữ nhật, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT 1. Khái niệm diện tích đa giác. Số đo phần mặt phẳng giới hạn bởi một đa giác được gọi là diện tích đa giác đó. Mỗi đa giác có một diện tích là một số dương xác định. Diện tích đa giác có các tính chất sau: + Hai tam giác bằng nhau thì có diện tích bằng nhau. + Nếu một đa giác được chia thành những đa giác không có điểm trong chung thì diện tích của nó bằng tổng diện tích của những đa giác đó. + Nếu chọn hình vuông có cạnh 1 cm, 1 dm, 1 m … làm đơn vị đo diện tích thì đơn vị diện tích của hình vuông đó tương ứng là 1 cm2, 1 dm2, 1 m2 … 2. Công thức tính diện tích một số hình cơ bản. + Diện tích hình chữ nhật bằng tích hai kích thước của nó. + Diện tích hình vuông bằng bình phương cạnh của nó. + Diện tích tam giác vuông bằng nửa tích hai cạnh góc vuông. + Diện tích tam giác thường bằng nửa tích một cạnh và chiều cao hạ xuống cạnh đó. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính diện tích đa giác. Phương pháp giải: Sử dụng ba khái niệm diện tích của đa giác. Dạng 2. Diện tích hình chữ nhật. Phương pháp giải: Sử dụng công thức tính diện tích hình chữ nhật. Dạng 3. Diện tích hình vuông. Phương pháp giải: Sử dụng công thức tính diện tích hình vuông. Dạng 4. Diện tích tam giác vuông. Phương pháp giải: Sử dụng công thức tính diện tích tam giác vuông và định lí Pytago. Dạng 5. Tổng hợp các dạng trên. B. PHIẾU BÀI TỰ LUYỆN Dạng 1: Diện tích hình chữ nhật. Dạng 2: Tính độ dài các cạnh của hình chữ nhật. Dạng 3: Diện tích hình vuông. Diện tích tam giác vuông. Dạng 4: Bài tập tổng hợp.

Nguồn: toanmath.com

Đăng nhập để đọc

Chuyên đề mở đầu về phương trình
Nội dung Chuyên đề mở đầu về phương trình Bản PDF - Nội dung bài viết Chuyên đề mở đầu về phương trình Chuyên đề mở đầu về phương trình Tài liệu này bao gồm 18 trang chứa thông tin tóm tắt về lý thuyết cơ bản về phương trình như: phân dạng, cách giải các dạng toán, và các bài tập từ cơ bản đến nâng cao. Đặc biệt, tài liệu này được tuyển chọn kỹ lưỡng để hỗ trợ học sinh trong quá trình học tập chương trình Đại số lớp 8 chương 3: Phương trình bậc nhất một ẩn. Phần A của tài liệu này bao gồm bài giảng củng cố kiến thức cơ bản về phương trình, bao gồm các nội dung như phương trình một ẩn, cách giải phương trình, và phương trình tương đương. Phần B của tài liệu chứa các bài tập minh họa cơ bản trong đề tài này, bao gồm giải phương trình và hai phương trình tương đương. Phần C là phần bài tập nâng cao tổng hợp, giúp học sinh thử thách và nâng cao kiến thức về phương trình. Phần D chứa phiếu bài tập tự luyện, giúp học sinh tự kiểm tra và đánh giá kiến thức của mình sau khi học xong chuyên đề này.
Chuyên đề biến đổi các biểu thức hữu tỉ, giá trị của phân thức
Nội dung Chuyên đề biến đổi các biểu thức hữu tỉ, giá trị của phân thức Bản PDF - Nội dung bài viết Chuyên đề biến đổi các biểu thức hữu tỉ, giá trị của phân thức Chuyên đề biến đổi các biểu thức hữu tỉ, giá trị của phân thức Trong chuyên đề này, chúng ta sẽ tìm hiểu về cách biến đổi các biểu thức hữu tỉ và tính giá trị của phân thức. Để hiểu rõ hơn về chủ đề này, chúng ta cần nắm vững các kiến thức cơ bản sau: I. Biến đổi các biểu thức hữu tỉ: - Biểu thức hữu tỉ là một phân thức hoặc một dãy các phép toán được thực hiện trên các phân thức. - Để biến đổi một biểu thức hữu tỉ thành một phân thức, chúng ta cần áp dụng các quy tắc của phép toán cộng, trừ, nhân và chia trên các phân thức. II. Giá trị của phân thức: - Giá trị của một phân thức chỉ được xác định khi mẫu thức khác 0. - Đối với biểu thức hữu tỉ có hai biến x và y, giá trị của biểu thức chỉ được xác định khi có các cặp số (x; y) thỏa mãn mẫu thức khác 0. III. Bài tập và các dạng toán: Dạng 1: Tìm điều kiện xác định của phân thức. Chúng ta cần xác định giá trị của biến để mẫu thức không bằng 0. Dạng 2: Biến đổi biểu thức hữu tỉ thành phân thức. - Bước 1: Sử dụng quy tắc cộng, trừ, nhân và chia trên các phân thức để biến đổi. - Bước 2: Tiếp tục biến đổi đến khi có phân thức có dạng A/B với A, B là các đa thức và B khác 0. Dạng 3: Thực hiện phép tính với các biểu thức hữu tỉ. Sử dụng quy tắc phép toán đã học để biến đổi và tính giá trị của biểu thức. Dạng 4: Tìm x để giá trị của một phân thức thỏa mãn điều kiện cho trước. Sử dụng các kiến thức về giá trị phân thức, quy tắc dấu của các số và các hằng đẳng thức để giải bài toán. Thông qua việc hiểu rõ về các dạng toán và quy tắc trong chuyên đề này, chúng ta sẽ có thêm kiến thức và kỹ năng để giải các bài toán liên quan đến biến đổi biểu thức hữu tỉ và tính giá trị của phân thức.
Chuyên đề phép chia các phân thức đại số
Nội dung Chuyên đề phép chia các phân thức đại số Bản PDF - Nội dung bài viết Chuyên đề phép chia các phân thức đại số Chuyên đề phép chia các phân thức đại số Tài liệu này bao gồm 13 trang, tập trung vào việc giải thích cách chia các phân thức đại số. Nó tóm tắt những kiến thức cốt lõi mà bạn cần phải đạt được, cung cấp hướng dẫn cụ thể về cách giải các dạng toán khác nhau, và chứa một loạt các bài tập từ cơ bản đến nâng cao trong chuyên đề này. Trên cơ sở lý thuyết, chúng ta sử dụng các quy tắc chia phân thức để thực hiện phép tính. Ví dụ, chia A/B cho C/D tương đương với nhân A/B với nghịch đảo của C/D, với điều kiện C/D khác không. Luôn lưu ý tính toán từ trái sang phải khi có nhiều phân thức trong phép chia. Bài tập cũng tập trung vào việc tìm phân thức thỏa mãn đẳng thức cho trước. Để giải bài toán này, ta cần đưa phân thức cần tìm về riêng một vế và sử dụng quy tắc nhân và chia phân thức để suy ra kết quả cuối cùng. Các bài toán nâng cao trong tài liệu cũng đề cập đến các trường hợp phức tạp hơn, thách thức hơn đối với học sinh. Tuy nhiên, bằng cách tự tin áp dụng kiến thức đã học, bạn sẽ có thể giải quyết chúng một cách mạch lạc. Với đáp án và lời giải chi tiết, tài liệu này không chỉ là một công cụ học tập hữu ích mà còn là người bạn đồng hành đáng tin cậy trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số.
Chuyên đề phép nhân các phân thức đại số
Nội dung Chuyên đề phép nhân các phân thức đại số Bản PDF - Nội dung bài viết Chuyên đề phép nhân các phân thức đại số Chuyên đề phép nhân các phân thức đại số Tài liệu này bao gồm 11 trang, tập trung vào việc giải thích lý thuyết quan trọng cần hiểu, cung cấp các dạng toán và hướng dẫn cách giải, đồng thời chọn lọc bài tập từ dễ đến khó trong chuyên đề phép nhân các phân thức đại số. Tài liệu cung cấp đáp án và lời giải chi tiết, giúp học sinh tiếp cận và hiểu rõ hơn về chương trình Đại số 8 chương 2: Phân thức đại số. I. Tóm tắt lý thuyết: Trong phần này, tóm tắt các lý thuyết quan trọng như quy tắc nhân phân thức để áp dụng vào việc giải các bài toán. II. Bài tập và các dạng toán: Dạng 1: Sử dụng quy tắc nhân để thực hiện phép tính, vận dụng quy tắc đã học vào bài toán cụ thể. Dạng 2: Tính toán bằng cách kết hợp các quy tắc đã học như quy tắc cộng, trừ và nhân. Có thể áp dụng quy tắc nhân đối với nhiều phân thức, ưu tiên tính toán biểu thức trong dấu ngoặc trước (nếu có). Tài liệu này được thiết kế để giúp học sinh hiểu và áp dụng phép nhân các phân thức đại số một cách linh hoạt và chính xác trong quá trình học tập.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6