Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương trình hàm trên tập rời rạc

Những bài toán về chủ đề phương trình hàm hiện nay đã trở nên khá phổ biến đối với các bạn học sinh yêu thích môn Toán, vì chúng đã xuất hiện thường xuyên hơn trong các đề thi học sinh giỏi môn Toán các cấp cũng như kì thi chọn đội tuyển HSG Toán cấp quốc gia, VMO hay các kì thi khu vực và quốc tế. Đặc biệt, trong các lớp dạng phương trình hàm, thì dạng phương trình hàm trên các tập rời rạc là một mảng được ít các học sinh chú ý tới bởi độ khó và chưa được tiếp xúc nhiều đồng thời ngoài việc sử dụng các kĩ thuật xử lý phương trình hàm cơ bản chúng ta còn phải sử dụng các tính chất số học rất đặc sắc của tập rời rạc như là: tính chia hết, tính chất của số nguyên tố, của số chính phương … Trong tài liệu này, nhóm tác giả Chinh Phục Olympic Toán: Nguyễn Minh Tuấn, Doãn Quang Tiến, Tôn Ngọc Minh Quân sẽ mang tới cho bạn đọc tuyển tập các bài toán phương trình hàm trên tập rời rạc và một số bài toán phương trình hàm khác hay và khó, với những lời giải vô cùng đặc sắc, nhằm giúp bạn đọc có thể có nhiều cách nhìn khác về mảng toán này đồng thời cũng như chuẩn bị cho các kì học sinh giỏi Toán, kỳ thi Olympic. [ads] Để giải quyết các bài toán phương trình hàm trên tập rời rạc mà có thể giải bằng các tính chất số học thì nên lưu ý đến một số dấu hiệu sau: + Nếu xuất hiện các biểu thức tuyến tính chứa lũy thừa, có thể nghĩ đến các bài toán liên quan đến cấp của phần tử, các phương trình đặc biệt như phương trình Pell hay phương trình Pythagore … hay đưa về việc xử lý các phương trình vô định nghiệm nguyên. + Nếu hàm số đã cho là hàm nhân tính, ta thường hay xét đến giá trị hàm số tại các điểm là số nguyên tố hoặc dãy vô hạn các số nguyên tố. + Sử dụng các đẳng thức và bất đẳng thức số học. + Và đặc biệt nhất, trong một số bài toán, hệ cơ số đếm có thể dùng để xây dựng nhiều dãy số có tính chất số học thú vị. Trong hệ cơ số 10 chúng ta có thể rất khó nhận ra quy luật của dãy, nhưng nếu chọn được hệ cơ số phù hợp thì bài toán có thể giải quyết đơn giản hơn rất nhiều. Trong tài liệu này, nhóm tác giả sẽ đề cập đến các bài toán phương trình hàm mà sử dụng các tính chất cũng như các phương pháp trong số học để giải, nhằm giúp bạn đọc hiểu rõ hơn và có một cái nhìn mới mẻ hơn về các phương pháp khác để giải phương trình hàm, bên cạnh đó nhóm tác giả cũng sẽ giới thiệu cho bạn đọc các bài toán phương trình hàm và khó.

Nguồn: toanmath.com

Đăng nhập để đọc

Phương trình hàm qua các cuộc thi trên thế giới năm 2022
Tài liệu gồm 53 trang, được biên soạn bởi tác giả Đoàn Quang Đăng, tuyển chọn các bài toán phương trình hàm qua các cuộc thi trên thế giới năm 2022, có đáp án và lời giải chi tiết; hỗ trợ học sinh ôn tập chuẩn bị cho kỳ thi học sinh giỏi Toán THPT. Mục lục : 1 Đề bài 2. 1.1 Phương trình hàm trên tập số thực 2. 1.2 Phương trình hàm trên tập số thực dương 3. 1.3 Phương trình hàm trên tập rời rạc 4. 1.4 Bất phương trình hàm 5. 2 Lời giải 6. 2.1 Phương trình hàm trên tập số thực 6. 2.2 Phương trình hàm trên tập các số thực dương 23. 2.3 Phương trình hàm trên tập rời rạc 38. 2.4 Bất phương trình hàm 47.
Đồ thị của hàm số đa thức
Tài liệu chủ đề đồ thị của hàm số đa thức gồm 10 trang, được biên soạn bởi tác giả Lê Phúc Lữ (ĐH KHTN TP HCM) và Trần Nguyễn Thanh Danh (PTNK TP HCM), hướng tới kỳ thi chọn học sinh giỏi Toán THPT cấp Quốc gia năm 2023.
Hai bổ đề trong bài toán phương trình hàm trên tập các số thực dương
Phương trình hàm trên tập các số thực dương luôn là các bài toán hay và khó. Để giải quyết các bài toán này chúng ta cần vận dụng nhiều kỹ thuật kinh điển trong giải toán phương trình hàm kết hợp nhuần nhuyễn với các kiến thức Đại số và Giải tích. Trong bài viết này, các tác giả Đoàn Quang Đăng (THPT Chuyên Bến Tre) và Võ Trần Hiền (THPT Chuyên Tiền Giang) sẽ giới thiệu hai bổ đề khá thú vị dùng để giải quyết các lớp bài toán có thể đưa về dạng f(x + A) = f(x) + B và f(x + A) + B = f(x + C) + D. Mục lục : 1 Bổ đề 1 – f(x + A) = f(x) + B 2. 2 Bổ đề 2 – f(x + A) + B = f(x + C) + D 10. 3 Bài tập rèn luyện 17. 4 Tài liệu tham khảo 18. + Diễn đàn Art of Problem Solving. + Nhóm Hướng tới Olympic VN. + Một góc nhìn tổng quát cho bài phương trình hàm thi HSG QG 2022 – Nguyễn Huy Trung. + Hai bổ đề trong bài toán phương trình hàm trên tập số thực dương – Đoàn Quang Đăng. + Vietnamese Mathematical Competitions 2022 Booklet.
Phương pháp thế và sử dụng tính chất ánh xạ giải toán phương trình hàm trên R
Tài liệu gồm 59 trang, hướng dẫn áp dụng phương pháp thế và phương pháp sử dụng tính chất ánh xạ trong việc giải bài toán phương trình hàm trên R. Trong chương trình chuyên Toán ở các trường THPT chuyên, phương trình hàm là một chuyên đề quan trọng. Hiện nay tài liệu về phương trình khá phong phú. Tuy vậy, việc giải được phương trình hàm vẫn là vấn đề khó đối với nhiều học sinh. Trong chuyên đề nhỏ này, chúng tôi sẽ trình bày hai phương pháp thông dụng và quan trọng để giải phương trình hàm trên tập R. Đó là phương pháp thế và phương pháp sử dụng tính chất ánh xạ. I. Phương pháp thế trong giải phương trình hàm. 1. Một số lưu ý khi sử dụng phương pháp thế. 2. Các ví dụ. 3. Bài tập vận dụng. 4. Bài tập củng cố. II. Sử dụng tính chất ánh xạ để giải phương trình hàm. 1. Nhắc lại một số khái niệm và tính chất của ánh xạ. 1.1. Ánh xạ. 1.2. Đơn ánh, toàn ánh, song ánh. 1.3. Ánh xạ ngược của một song ánh. 1.4. Ánh xạ hợp. 2. Các ví dụ. 2.1. Sử dụng tính đơn ánh giải phương trình hàm. 2.2. Sử dụng tính toàn ánh giải phương trình hàm. 2.3. Sử dụng tính song ánh giải phương trình hàm. 3. Bài tập vận dụng. 4. Bài tập củng cố.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6