Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 - 2020 sở GDĐT Ninh Bình

Ngày 11 tháng 09 năm 2019, sở Giáo dục và Đào tạo tỉnh Ninh Bình tổ chức kỳ thi chọn học sinh giỏi THPT cấp tỉnh môn Toán năm học 2019 – 2020. Đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Ninh Bình với 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Ninh Bình : + Cho tam giác nhọn ABC, đường cao AD (D thuộc BC) và hai điểm M, N lần lượt nằm trên các cạnh AB, AC sao cho MN song song với BC. Điểm P chuyển động trên đoạn thẳng MN. Lấy các điểm E, F sao cho EP ⊥ AC, EC ⊥ BC, FP ⊥ AB, FB ⊥ BC. a) Gọi I là giao của EF và AD. Chứng minh rằng I cố định khi P chuyển động trên đoạn MN. b) Đường thẳng qua A vuông góc với EF cắt BC tại Q. Chứng minh rằng đường trung trực của đoạn thẳng BC đi qua trung điểm của đoạn thẳng PQ. [ads] + Cho số nguyên dương n và tập hợp S = {1;2 … n}. Tìm số các tập con của S không chứa hai số nguyên dương liên tiếp. + Xét phương trình: x^n = x^2 + x + 1, n thuộc N, n > 2. a) Chứng minh rằng với mỗi số tự nhiên n lớn hơn 2 phương trình trên có đúng một nghiệm dương duy nhất. b) Gọi xn là nghiệm dương duy nhất của phương trình trên. Tính limxn.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề học sinh giỏi Toán 12 cấp tỉnh năm 2022 - 2023 sở GDKHCN Bạc Liêu
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi lớp 12 cấp tỉnh kết hợp thi chọn đội tuyển dự thi học sinh giỏi Quốc gia năm học 2022 – 2023 môn Toán sở Giáo dục, Khoa học và Công Nghệ tỉnh Bạc Liêu; kỳ thi được diễn ra vào ngày 06 tháng 11 năm 2022. Trích dẫn Đề học sinh giỏi Toán 12 cấp tỉnh năm 2022 – 2023 sở GDKHCN Bạc Liêu : + Cho hai đường tròn (O1), (O2) cắt nhau tại hai điểm A, B. XA, AY theo thứ tự là hai đường kính của hai đường tròn đó. I là một điểm thuộc phân giác trong XAY sao cho I không thuộc hai đường tròn và OI không vuông góc XY, O là trung điểm của XY. Đường thẳng qua A vuông góc AI cắt (O1), (O2) lần lượt tại E, F. IX cắt (O1) tại K, IY cắt (O2) tại L. a) Gọi C là giao của FE với XI. Chứng minh OE tiếp xúc với (CEK). b) Chứng minh EK, FL, OI đồng quy. + Gọi Q là tập tất cả các số tự nhiên gồm 7 chữ số đội một khác nhau. Từ tập Q, lấy ngẫu nhiên một số. Tính xác suất để lấy được số chia hết cho 15. + Tìm hình vuông có kích thước bé nhất, để trong hình vuông đó có thể sắp xếp năm hình tròn bán kính 1, sao cho không có hai hình tròn nào trong chúng có nhiều hơn một điểm chung.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 - 2023 sở GDĐT Bến Tre
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bến Tre. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Bến Tre : + Gọi S là tập tất cả các số có 7 chữ số mà tổng các chữ số của nó bằng 59. Lấy ngẫu nhiên một số trong S. Tính xác suất để số được chọn chia hết cho 11. + Cho tứ giác ABCD nội tiếp đường tròn (O). E là giao điểm của AB và CD, F là giao điểm của AD và BC. Gọi M, N lần lượt là trung điểm của BD, AC. Chứng minh rằng: đường tròn (MNF) tiếp xúc với EF. + Cho số thực x, ký hiệu [x] là số nguyên lớn nhất không vượt quá x. Thực hiện các yêu cầu sau: a) Với p là số nguyên tố có dạng 4k + 1, k thuộc N*. Tính. b) Với p là số nguyên tố lẻ, q là số nguyên dương không chia hết cho p. Chứng minh rằng.
Đề chọn học sinh giỏi tỉnh Toán 12 năm 2022 - 2023 sở GDĐT Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nghệ An; đề thi gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề). Trích dẫn Đề chọn học sinh giỏi tỉnh Toán 12 năm 2022 – 2023 sở GD&ĐT Nghệ An : + Mạng lưới giao thông trong một thành phố được bố trí dạng lưới chữ nhật kích thước 10 × 12 như hình vẽ. An lần đầu đến thành phố, muốn đi qua thành phố từ điểm xuất phát A đến điểm cuối B. An chỉ biết xác định các hướng đi để quãng đường đi là ngắn nhất. Giả sử tại các điểm giao nhau An có thể đi ngẫu nhiên theo một trong các hướng đã định. Tính xác suất để An không đi qua Quảng trường trung tâm C. + Cho tứ diện ABCD có AB = 10, AC = AD = 20. Biết rằng BAC + CAD + DAB = ABC + CBD + DBA = ACB + BCD + DCA = 180. Tính chu vi tam giác BCD và tìm giá trị nhỏ nhất của biểu thức P = MA + MB + MC + MD khi điểm M thay đổi trong không gian. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh BC = a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách từ điểm A đến mặt phẳng (SCD) bằng 2 a và đường thẳng SC tạo với mặt phẳng (ABCD) một góc với 1 tan 2. a) Tính thể tích khối chóp S.ABCD theo a. b) Tính sin của góc giữa đường thẳng SC với mặt phẳng SAD.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 - 2023 sở GDĐT Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển thành phố dự thi học sinh giỏi Quốc gia môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra trong hai ngày: vòng 1: 22/10/2022 và vòng 2: 23/10/2022. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Hà Nội : + Cho tam giác nhọn ABC nội tiếp đường tròn (O). Trên cung nhỏ AC lấy điểm D sao cho tứ giác ABCD không là hình thang. Đường tròn ngoại tiếp tam giác AOD và đường tròn ngoại tiếp tam giác BOC cắt nhau tại hai điểm phân biệt H và O. Gọi I là giao điểm của AC và BD. a) Chứng minh đường thẳng HI vuông góc với đường thẳng HO. b) Gọi M là trung điểm của CD và N là hình chiếu của I lên BC. Chứng minh bốn điểm M, H, N và C cùng thuộc một đường tròn. + Cho tập hợp M gồm 10 màu khác nhau và hai đoạn thẳng AB, CD cùng có độ dài bằng 100. Chia AB thành 100 đoạn và tô mỗi màu trong M cho đúng 10 đoạn. Chia CD thành 10 đoạn và tô mỗi màu trong M cho đúng 1 đoạn. Chồng khớp AB lên CD sao cho A trùng C và B trùng D. Gọi S là tổng độ dài của các phần có chung màu trên AB và CD. a) Chứng minh rằng tồn tại một cách chia và tô màu cho AB, đồng thời tồn tại một cách chia CD mà với mọi cách tô màu cho CD thì S = 10. b) Chứng minh rằng với mọi cách chia và tô màu cho AB, đồng thời với mọi cách chia CD, luôn tồn tại cách tô màu cho CD để S ≥ 10. + Cho số nguyên dương n lớn hơn 3. Viết các số 1, 2, …, n vào các ô vuông của bảng ô vuông cỡ n x n sao cho hai ô vuông khác nhau được viết hai số khác nhau. Chứng minh rằng tồn tại hai ô vuông nằm trên cùng một hàng hoặc nằm trên cùng một cột sao cho hiệu của hai số được viết trên hai ô vuông đó lớn hơn n²/2.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6