Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2020 - 2021 sở GDĐT Phú Yên

Thứ Ba ngày 30 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Phú Yên tổ chức kỳ thi chọn học sinh giỏi môn Toán THPT cấp tỉnh năm học 2020 – 2021. Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2020 – 2021 sở GD&ĐT Phú Yên gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2020 – 2021 sở GD&ĐT Phú Yên : + Cho tam giác nhọn ABC có đường cao AM, trực tâm H. Đường thẳng BH cắt đường tròn đường kính AC tại D, E (BD < BE). Đường thẳng CH cắt đường tròn đường kính AB tại F, G (CF < CG). Đường tròn ngoại tiếp tam giác DMF cắt BC tại điểm thứ hai là N. a) Chứng minh rằng các điểm G, M, N, E cùng thuộc một đường tròn. b) Chứng minh rằng các đường thẳng BF, CD, HN đồng quy. + Cho P(x), Q(x) là các đa thức có hệ số cao nhất bằng 1 và các hệ số đều là số thực và deg P(x) = deg Q(x) = 2020. Chứng minh rằng nếu phương trình P(x) = Q(x) không có nghiệm thực thì phương trình P(x + 2021) = Q(x – 2021) có nghiệm thực. + Cho p là số nguyên tố khác 2; a và b là hai số tự nhiên lẻ sao cho (a + b) chia hết cho p, (a − b) chia hết cho (p – 1). Chứng minh rằng (a^b + b^a) chia hết 2p.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2022 2023 sở GD ĐT Cà Mau
Đề thi học sinh giỏi thành phố lớp 12 môn Toán năm 2022 2023 sở GD ĐT Hà Nội
Nội dung Đề thi học sinh giỏi thành phố lớp 12 môn Toán năm 2022 2023 sở GD ĐT Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp thành phố môn Toán lớp 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra vào ngày 28 tháng 09 năm 2022. Trích dẫn Đề thi học sinh giỏi thành phố Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Hà Nội : + Cho hàm số y = x^3 – 3x + 1 có đồ thị (C). 1) Viết phương trình tiếp tuyến của (C) biết tiếp tuyến đi qua điểm M(2;3). 2) Tìm tất cả giá trị của a để qua điểm A(a;-1) kẻ được ba tiếp tuyến đến đồ thị (C) trong đó có hai tiếp tuyến vuông góc với nhau. + Gọi A là tập hợp các số tự nhiên có 8 chữ số được lập từ các chữ số 1, 2, 3, 4, 5, 6 sao cho các chữ số 1 và 2 xuất hiện hai lần, các chữ số còn lại xuất hiện một lần. Chọn ngẫu nhiên một số thuộc A. Tính xác suất để số được chọn có các chữ số giống nhau không đứng cạnh nhau. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và cạnh bên SA vuông góc với mặt phẳng (ABCD). Góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 60°. 1) Tính khoảng cách giữa hai đường thẳng SC và BD. 2) Gọi M và N là hai điểm lần lượt nằm trên hai đoạn thẳng SD và BC thỏa mãn MS/MD = NC/NB. Tìm giá trị nhỏ nhất của độ dài đoạn thẳng MN.
Đề thi HSG lớp 12 môn Toán năm 2022 2023 trường THPT chuyên Lê Quý Đôn Bình Định
Nội dung Đề thi HSG lớp 12 môn Toán năm 2022 2023 trường THPT chuyên Lê Quý Đôn Bình Định Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán lớp 12 năm học 2022 – 2023 trường THPT chuyên Lê Quý Đôn, tỉnh Bình Định; kỳ thi được diễn ra vào thứ Sáu ngày 16 tháng 09 năm 2022. Trích dẫn Đề thi HSG Toán lớp 12 năm 2022 – 2023 trường THPT chuyên Lê Quý Đôn – Bình Định : + Xét 300 viên bi mà mỗi viên bi có một màu và tổng tất cả các màu của tất cả 300 viên bi là 25. Một viên bi được gọi là viên bi đặc biệt nếu trong 299 viên bi còn lại có không quá 9 viên bi cùng màu với nó. Hỏi trong số 300 viên bi có tối đa bao nhiêu viên bi đặc biệt. + Cho tam giác ABC không cân, có (I) là đường tròn nội tiếp, các tiếp điểm trên BC, CA, AB lần lượt là D, E, F; AD cắt EF tại J. Các điểm M, N di chuyển trên (I) sao cho M, N, J thẳng hàng, DM cắt AC tại P, DN cắt AB tại Q. Gọi U, V lần lượt là giao điểm của các cặp đường thẳng (ME;FN), (MF;EN). a. Gọi G là giao điểm của EF và BC, chứng minh G, U, V thẳng hàng. b. Chứng minh MN, PQ, UV đồng quy. + Cho p là một số nguyên tố. Chứng minh rằng với a là số nguyên dương sao cho 1 p a chia hết cho p thì 1 p a cũng chia hết cho 2 p.
Đề thi học sinh giỏi lớp 12 môn Toán năm 2022 2023 sở GD ĐT Quảng Trị
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán năm 2022 2023 sở GD ĐT Quảng Trị Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi văn hóa môn Toán lớp 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Trị; đề thi gồm 05 bài toán hình thức tự luận, thời gian làm bài 180 phút (không kể thời gian giao đề), kỳ thi được diễn ra vào thứ Tư ngày 21 tháng 09 năm 2022. Trích dẫn đề thi học sinh giỏi Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Quảng Trị : + Khi nuôi cá thí nghiệm trong hồ, một nhà sinh vật học thấy rằng: nếu trên mỗi đơn vị diện tích mặt hồ có n con cá (n < 12) thì khối lượng trung bình mỗi con cá sau một vụ thu hoạch bằng 2 60 5 n n (gam). Hỏi phải thả bao nhiêu con cá trên một đơn vị diện tích mặt hồ để thu được khối lượng cá lớn nhất? + Chọn ngẫu nhiên 4 học sinh trong một nhóm gồm 6 nam và 4 nữ để làm trực nhật. Tính xác suất để trong 4 học sinh được chọn có nhiều nhất 3 học sinh nam. + Cho hàm số y f x liên tục trên thỏa mãn f f 7 16 1. Chứng minh rằng phương trình 4 1 2 0 f x f x có nghiệm trên đoạn 2 5.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6