Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đa thức một biến Toán 7

Tài liệu gồm 30 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề đa thức một biến trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. + Đa thức một biến (gọi tắt là đa thức) là tổng của những đơn thức của cùng một biến; mỗi đơn thức trong tổng gọi là một hạng tử của đa thức đó. + Số 0 cũng được gọi là một đa thức, gọi là đa thức không. + Kí hiệu: Ta thường kí hiệu đa thức bằng một chữ cái in hoa. Đôi khi còn viết thêm kí hiệu biến trong ngoặc đơn. PHẦN II . CÁC DẠNG BÀI. Dạng 1 : Thu gọn và sắp xếp đa thức một biến. + Thu gọn đa thức một biến: Thực hiện phép tính cộng các đơn thức cùng bậc. + Sắp xếp đa thức một biến (đa thức khác 0): Viết đa thức dưới dạng thu gọn và sắp xếp các hạng tử của nó theo lũy thừa giảm của biến. Dạng 2 : Tìm bậc và các hệ số của một đa thức. Trong một đa thức thu gọn và khác đa thức không: + Bậc của hạng tử có bậc cao nhất gọi là bậc của đa thức đó. + Hệ số của hạng tử có bậc cao nhất gọi là hệ số cao nhất của đa thức đó. + Hệ số của hạng tử có bậc 0 gọi là hệ số tự do của đa thức đó. Chú ý: + Đa thức không thì không có bậc. + Trong một đa thức thu gọn, hệ số cao nhất phải khác 0 (các hệ số khác có thể bằng 0). + Muốn tìm bậc của một đa thức chưa thu gọn, ta phải thu gọn đa thức đó. Dạng 3 : Tính giá trị của đa thức. Để tính giá trị của đa thức ta thực hiện theo các bước: + Bước 1: Thu gọn, sắp xếp đa thức theo lũy thừa giảm dần của biến. + Bước 2: Thay giá trị cụ thể của biến vào đa thức và thực hiện các phép tính. + Bước 3: Kết luận. Dạng 4 : Nghiệm của đa thức một biến. Nếu tại x a đa thức P x có giá trị bằng 0 thì ta nói a (hoặc x a) là một nghiệm của đa thức đó. + a là nghiệm của P x khi P a 0. + Một đa thức (khác đa thức không) có thể có một nghiệm, hai nghiệm … hoặc không có nghiệm. + Số nghiệm số của một đa thức không vượt quá bậc của nó. Để tìm nghiệm của đa thức P x ta cho P x 0 rồi tìm giá trị x thỏa mãn. Để chứng minh x a là nghiệm của của đa thức P x ta chỉ ra P a 0. Để chứng minh x a là không nghiệm của của đa thức P x ta chỉ ra P a 0. Gọi ẩn và lập biểu thức chứa biến biểu diễn mối quan hệ giữa đại lượng theo ẩn. PHẦN III . BÀI TẬP TỰ LUYỆN.

Nguồn: toanmath.com

Đăng nhập để đọc

Các chuyên đề học tập môn Toán 7 phần Đại số
Tài liệu gồm 786 trang, trình bày lý thuyết trọng tâm và phương pháp giải các dạng bài tập môn Toán 7 phần Đại số. Đại số 7 – Chuyên đề 1.1. Tập hợp số hữu tỉ. Đại số 7 – Chuyên đề 1.2. Tập hợp số hữu tỉ. Đại số 7 – Chuyên đề 2.1. Cộng, trừ số hữu tỉ. Đại số 7 – Chuyên đề 2.2. Cộng, trừ số hữu tỉ. Đại số 7 – Chuyên đề 3.1. Nhân, chia số hữu tỉ. Đại số 7 – Chuyên đề 3.2. Nhân, chia số hữu tỉ. Đại số 7 – Chuyên đề 4.1. Lũy thừa của một số hữu tỉ. Đại số 7 – Chuyên đề 4.2. Lũy thừa của một số hữu tỉ. Đại số 7 – Chuyên đề 5. Thứ tự thực hiện phép tính. Đại số 7 – Chuyên đề 6. Số thập phân vô hạn tuần hoàn. Đại số 7 – Chuyên đề 9.1. Biểu đồ hình quạt tròn. Đại số 7 – Chuyên đề 9.2. Biểu đồ hình quạt tròn. Đại số 7 – Chuyên đề 10.1. Biểu đồ đoạn thẳng. Đại số 7 – Chuyên đề 10.2. Biểu đồ đoạn thẳng. Đại số 7 – Chuyên đề 11. Tỉ lệ thức. Đại số 7 – Chuyên đề 12.1. Tính chất dãy tỉ số bằng nhau. Đại số 7 – Chuyên đề 13. Đại lượng tỉ lệ thuận. Đại số 7 – Chuyên đề 14. Đại lượng tỉ lệ nghịch. Đại số 7 – Chuyên đề 15. Biểu thức đại số. Đại số 7 – Chuyên đề 16. Đa thức một biến. Đại số 7 – Chuyên đề 17. Phép cộng và phép trừ đa thức một biến. Đại số 7 – Chuyên đề 18. Phép nhân đa thức một biến. Đại số 7 – Chuyên đề 19. Phép chia đa thức một biến. Đại số 7 – Chuyên đề 20.1. Làm quen với biến cố. Đại số 7 – Chuyên đề 20.2. Làm quen với biến cố. Đại số 7 – Chuyên đề 21.1. Làm quen với xác suất của biến cố. Đại số 7 – Chuyên đề 21.2. Làm quen với xác suất của biến cố.
Tài liệu học tập môn Toán 7 theo bộ sách Chân Trời Sáng Tạo (Tập 1)
Tài liệu học tập môn Toán 7 theo bộ sách Chân Trời Sáng Tạo (Tập 1) được biên soạn bởi thầy giáo Trần Công Dũng gồm 101 trang. MỤC LỤC : Chương 1 SỐ HỮU TỈ 1. Bài 1. TẬP HỢP CÁC SỐ HỮU TỈ 1. Bài 2. CỘNG, TRỪ SỐ HỮU TỈ 4. Bài 3. NHÂN, CHIA SỐ HỮU TỈ 8. Bài 4. LŨY THỪA CỦA MỘT SỐ HỮU TỈ 18. Chương 2 SỐ THỰC 35. Bài 1. SỐ VÔ TỈ. KHÁI NIỆM VỀ CĂN BẬC HAI 35. Bài 2. SỐ THỰC 39. Bài 3. LÀM TRÒN SỐ 41. Chương 3 CÁC HÌNH KHỐI TRONG THỰC TIỄN 45. Bài 1. HÌNH HỘP CHỮ NHẬT – HÌNH LẬP PHƯƠNG 45. Bài 2. DTXQ VÀ TT CỦA HÌNH HỘP CHỮ NHẬT 47. Bài 3. HÌNH LĂNG TRỤ ĐỨNG TAM GIÁC – TỨ GIÁC 49. Bài 4. DTXQ VÀ TT CỦA HÌNH LĂNG TRỤ 51. Chương 4 HÌNH HỌC PHẲNG VÀ ĐƯỜNG THẲNG SONG SONG 56. Bài 1. CÁC GÓC Ở VỊ TRÍ ĐẶC BIỆT 56. Bài 2. TIA PHÂN GIÁC 58. Bài 3. HAI ĐƯỜNG THẲNG SONG SONG 60. Bài 4. CHỨNG MINH SONG SONG 64. Bài 5. ĐỊNH LÍ VÀ CHỨNG MINH MỘT ĐỊNH LÍ 69. Chương 5 MỘT SỐ YẾU TỐ THỐNG KÊ 71. Bài 1. THU THẬP VÀ PHÂN LOẠI DỮ LIỆU 72. Bài 2. PHÂN TÍCH VÀ XỬ LÝ DỮ LIỆU 76. Bài 3. BIỂU ĐỒ ĐOẠN THẲNG 79. Chương 6 BIỂU ĐỒ 88. Bài 1. BIỂU ĐỒ HÌNH QUẠT TRÒN 88.
22 chuyên đề bồi dưỡng Hình học 7
Tài liệu gồm 229 trang, tuyển tập 22 chuyên đề bồi dưỡng Hình học 7, có đáp án và lời giải chi tiết. CÁC CHUYÊN ĐỀ BỒI DƯỠNG Chương I : ĐƯỜNG THẲNG VUÔNG GÓC. ĐƯỜNG THẲNG SONG SONG. Chuyên đề 1: Hai góc đối đỉnh 3. Chuyên đề 2: Hai đường thẳng vuông góc 7. Chuyên đề 3: Dấu hiệu nhận biết hai đường thẳng song song 11. Chuyên đề 4: Tiên đề Ơ-clit. Tính chất của hai đường thẳng song song 15. Chuyên đề 5: Định lí 20. Chuyên đề 6: Chứng minh phản chứng 24. Chương II : TAM GIÁC. Chuyên đề 7: Tổng ba góc của một tam giác 29. Chuyên đề 8: Hai tam giác bằng nhau. Các trường hợp bằng nhau của hai tam giác 35. Chuyên đề 9: Tam giác cân 48. Chuyên đề 10: Định lý Pytago 60. Chuyên đề 11: Các trường hợp bằng nhau của tam giác vuông 69. Chuyên đề 12: Vẽ hình phụ để giải bài toán 73. Chuyên đề 13: Chứng minh ba điểm thẳng hàng 81. Chuyên đề 14: Tính số đo góc 88. Chương III : QUAN HỆ CÁC YẾU TỐ TRONG TAM GIÁC. CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC. Chuyên đề 15: Quan hệ giữa góc và cạnh đối diện trong một tam giác 96. Chuyên đề 16: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu 100. Chuyên đề 17: Quan hệ giữa ba cạnh của một tam giác 104. Chuyên đề 18: Tính chất đường trung tuyến của tam giác 108. Chuyên đề 19: Tính chất tia phân giác của một góc. Tính chất ba đường phân giác của tam giác 112. Chuyên đề 20: Tính chất ba đường trung trực, ba đường cao của tam giác 116. Chuyên đề 21: Chứng minh ba đường thẳng đồng quy 122. Chuyên đề 22: Bất đẳng thức và cực trị hình học 127. HƯỚNG DẪN GIẢI – ĐÁP SỐ Chương I : ĐƯỜNG THẲNG VUÔNG GÓC. ĐƯỜNG THẲNG SONG SONG. Chuyên đề 1: Hai góc đối đỉnh 133. Chuyên đề 2: Hai đường thẳng vuông góc 138. Chuyên đề 3: Dấu hiệu nhận biết hai đường thẳng song song 142. Chuyên đề 4: Tiên đề Ơ-clit. Tính chất của hai đường thẳng song song 146. Chuyên đề 5: Định lí 150. Chuyên đề 6: Chứng minh phản chứng 154. Chương II : TAM GIÁC. Chuyên đề 8: Hai tam giác bằng nhau. Các trường hợp bằng nhau của hai tam giác 162. Chuyên đề 9: Tam giác cân 168. Chuyên đề 10: Định lý Pytago 175. Chuyên đề 11: Các trường hợp bằng nhau của tam giác vuông 180. Chuyên đề 12: Vẽ hình phụ để giải bài toán 185. Chuyên đề 13: Chứng minh ba điểm thẳng hàng 190. Chuyên đề 14: Tính số đo góc 194. Chương III : QUAN HỆ CÁC YẾU TỐ TRONG TAM GIÁC. CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC. Chuyên đề 15: Quan hệ giữa góc và cạnh đối diện trong một tam giác 203. Chuyên đề 16: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu 209. Chuyên đề 17: Quan hệ giữa ba cạnh của một tam giác 213. Chuyên đề 18: Tính chất đường trung tuyến của tam giác 219. Chuyên đề 19: Tính chất tia phân giác của một góc. Tính chất ba đường phân giác của tam giác 226. Chuyên đề 20: Tính chất ba đường trung trực, ba đường cao của tam giác 232. Chuyên đề 21: Chứng minh ba đường thẳng đồng quy 239. Chuyên đề 22: Bất đẳng thức và cực trị hình học 245.
Chuyên đề tính chất ba đường cao trong tam giác
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tính chất ba đường cao trong tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu : Kiến thức: + Nắm được khái niệm về đường cao của tam giác, tính chất ba đường cao trong tam giác và các đường đồng quy trong tam giác cân. Kĩ năng: + Vận dụng được các tính chất của đường cao để giải toán. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Xác định trực tâm của tam giác. Để xác định trực tâm của tam giác, ta đi tìm giao điểm của hai đường cao trong tam giác đó. Dạng 2 : Chứng minh hai đường thẳng vuông góc. Cách 1. Sử dụng tính chất ba đường cao trong tam giác đồng quy tại một điểm. Cách 2. Sử dụng định lí trong tam giác cân thì đường trung tuyến, đường phân giác ứng với cạnh đáy đồng thời là đường cao. Cách 3. Hai đường thẳng song song với nhau thì cùng vuông góc với đường thẳng thứ ba. Dạng 3 : Các bài toán tổng hợp. Sử dụng tính chất ba đường cao trong tam giác đồng quy tại một điểm.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6