Đề Olympic lớp 8 môn Toán năm 2018 2019 phòng GD ĐT TX Thái Hòa Nghệ An
Nội dung Đề Olympic lớp 8 môn Toán năm 2018 2019 phòng GD ĐT TX Thái Hòa Nghệ An Bản PDF -
Nội dung bài viết Đề Thi Olympic Toán Lớp 8 Năm 2018 - 2019 Phòng GD&ĐT TX Thái Hòa Nghệ An Đề Thi Olympic Toán Lớp 8 Năm 2018 - 2019 Phòng GD&ĐT TX Thái Hòa Nghệ An
Sytu xin gửi đến các em học sinh lớp 8 đề thi Olympic Toán lớp 8 năm 2018 - 2019 của phòng Giáo dục và Đào tạo Thị xã Thái Hòa - Nghệ An. Đề thi này nhằm mục đích giao lưu và tìm kiếm các em học sinh giỏi môn Toán lớp 8 đang học tại các trường THCS tại Thị xã Thái Hòa, tỉnh Nghệ An.
Đề thi Olympic Toán lớp 8 năm 2018 - 2019 của phòng Giáo dục và Đào tạo Thị xã Thái Hòa - Nghệ An được thiết kế theo hình thức tự luận với 05 bài toán, thời gian làm bài là 90 phút.
Dưới đây là một số câu hỏi trong đề thi: Cho tam giác ABC vuông tại A, có trung tuyến AM và đường cao AH. Trên nửa mặt phẳng bờ BC, kẻ hai tia Ax và Cy vuông góc với BC. Qua A, kẻ đường thẳng vuông góc với AM cắt Bx và Cy lần lượt tại P và Q. Chứng minh: a) AP = BP và AQ = CQ. b) PC đi qua trung điểm I của AH. c) Khi BC cố định, BC = 2a, điểm A chuyển động sao cho BAC = 90°. Tìm vị trí điểm H trên đoạn thẳng BC để diện tích tam giác ABH đạt giá trị lớn nhất, tìm giá trị lớn nhất đó. Cho phân thức: P = (n^3 + 2n^2 - 1)/(n^3 + 2n^2 + 2n + 1). a) Hãy tìm điều kiện xác định và rút gọn phân thức trên. b) Chứng minh rằng nếu n là một số nguyên thì giá trị phân thức tìm được trong câu a luôn là một phân số tối giản. Tìm đa thức f(x) biết: f(x) chia cho x - 2 dư 5; f(x) chia cho x - 3 dư 7; f(x) chia cho (x - 2)(x - 3) được thương là x^2 - 1 và đa thức dư là đa thức bậc nhất đối với x.
Đây là một số câu hỏi thú vị và thách thức trong đề thi Olympic Toán lớp 8 năm 2018 - 2019 của phòng Giáo dục và Đào tạo Thị xã Thái Hòa - Nghệ An. Chúc các em học sinh lớp 8 tham gia đề thi này đạt kết quả cao và có trải nghiệm học tập thú vị!