Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào 10 năm 2020 - 2021 môn Toán trường Gang Thép - Thái Nguyên

THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi thử tuyển sinh vào lớp 10 THPT năm học 2020 – 2021 môn Toán trường THPT Gang Thép, tỉnh Thái Nguyên; đề thi gồm có 01 trang với 10 bài toán dạng tự luận, thời gian làm bài thi là 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi thử vào 10 năm 2020 – 2021 môn Toán trường Gang Thép – Thái Nguyên : + Trên một vùng biển được xem như bằng phẳng và không có chướng ngại vật, vào lúc 6 giờ có một tàu cá đi thẳng qua tọa độ X theo hướng Từ Nam đến Bắc với vận tốc không đổi. Đến 7 giờ cùng ngày một tàu du lịch cũng đi thẳng qua tọa độ X theo hướng từ Đông sang Tây với vận tốc lớn hơn vận tốc tàu cá 12 km/h. Đến 8 giờ cùng ngày, khoảng cách giữa hai tàu là 60 km. Tính vận tốc của mỗi tàu. + Cho hai đường tròn (O1, R1) và (O2, R2) tiếp xúc ngoài tại E. Vẽ tiếp tuyến chung ngoài MN của hai đường tròn (M∈(O1); N∈(O2)), vẽ tiếp tuyến chung trong của hai đường tròn tại E cắt MN tại A. a) Chứng minh: tứ giác MAEO1 và tứ giác NAEO2 là các tứ giác nội tiếp. b) Tính MN theo R1, R2. [ads] + Cho tam giác nhọn ABC (AB < AC). Đường tròn tâm O đường kính BC cắt cạnh AC, AB lần lượt tại D và E. H là giao điểm của BD và CE. K là giao điểm của DE và AH. F là giao điểm của AH và BC. M là trung điểm của AH. Chứng minh rằng: MA2 = MK.MF.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề thi vào 10 môn Toán năm 2020 2021 trường chuyên Hoàng Văn Thụ Hòa Bình (đề chuyên)
Nội dung Đề thi vào 10 môn Toán năm 2020 2021 trường chuyên Hoàng Văn Thụ Hòa Bình (đề chuyên) Bản PDF - Nội dung bài viết Đề thi môn Toán vào lớp 10 trường chuyên Hoàng Văn Thụ Hòa Bình Đề thi môn Toán vào lớp 10 trường chuyên Hoàng Văn Thụ Hòa Bình Đề thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021 trường THPT chuyên Hoàng Văn Thụ – Hòa Bình (đề dành cho học sinh thi vào các lớp chuyên Toán) gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không tính thời gian phát đề). 1. Cho tam giác ABC nội tiếp đường tròn (O). Tia phân giác của góc A cắt đường tròn (O) tại D. Chứng minh rằng AB + AC < 2AD. 2. Một ca nô xuôi dòng trên một khúc sông từ bên A đến bến B dài 96km, sau đó lại ngược dòng đến địa điểm C cách bến B là 100km, thời gian xuôi dòng ít hơn ngược dòng là 30 phút. Tính vận tốc riêng của ca nô, biết vận tốc của dòng nước là 4km/h. 3. Từ một điểm A nằm ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M (M khác B, M khác C), từ M kẻ MI, MK, MP lần lượt vuông góc với AB, AC, BC (I thuộc AB, K thuộc AC, P thuộc BC). 1) Chứng minh rằng: MPK = MBC. 2) Chứng minh rằng: Tam giác MIP đồng dạng với tam giác MIK. 3) Xác định vị trí của điểm M trên cung nhỏ BC để tích MI.MK.MP đạt giá trị lớn nhất. Đây là đề thi môn Toán vào lớp 10 trường chuyên Hoàng Văn Thụ Hòa Bình, với những bài toán đa dạng về hình học và tính toán, đòi hỏi kiến thức sâu và kỹ năng giải quyết vấn đề. Hãy cùng học sinh khám phá và giải quyết các bài toán thú vị này!
Đề thi vào chuyên môn Toán năm 2020 2021 sở GD ĐT Lâm Đồng (chuyên Toán)
Nội dung Đề thi vào chuyên môn Toán năm 2020 2021 sở GD ĐT Lâm Đồng (chuyên Toán) Bản PDF - Nội dung bài viết Đề thi vào lớp 10 chuyên môn Toán năm 2020-2021 sở GD&ĐT Lâm Đồng (chuyên Toán) Đề thi vào lớp 10 chuyên môn Toán năm 2020-2021 sở GD&ĐT Lâm Đồng (chuyên Toán) Ngày Thứ Tư, 15 tháng 07 năm 2020, Sở Giáo dục và Đào tạo tỉnh Lâm Đồng đã tổ chức kỳ thi tuyển sinh vào lớp 10 chuyên môn Toán cho năm học 2020-2021. Đề thi này dành cho các thí sinh muốn thi vào các lớp chuyên Toán. Đề thi bao gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài là 120 phút. Ở đây mình sẽ trích dẫn một số bài toán trong đề thi: Bài 1: Cho hình thang ABCD (AB // CD), hai đường chéo vuông góc với nhau. Biết AC = 8 cm, BD = 6 cm. Hãy tính chiều cao của hình thang. Bài 2: Một tổ chức từ thiện cần chia đều một số quyển vở thành các phần quà để tặng cho các cháu nhỏ ở một trung tâm nuôi dạy trẻ mồ côi. Nếu mỗi phần quà giảm 6 quyển vở thì sẽ có thêm 5 phần quà nữa cho các cháu, còn nếu mỗi phần quà giảm 10 quyển vở thì các cháu sẽ có thêm 10 phần quà. Hỏi tổ chức từ thiện đó có bao nhiêu quyển vở. Bài 3: Cho hai đường tròn (O;R) và đường tròn (O';R') tiếp xúc trong tại điểm A (trong đó R > R'). Gọi BC là một dây của đường tròn lớn tiếp xúc với đường tròn nhỏ tại D. Hãy chứng minh rằng AD là tia phân giác của góc BAC. Đây là một số bài toán thú vị trong đề thi vào lớp 10 chuyên môn Toán của sở GD&ĐT Lâm Đồng. Hy vọng các thí sinh đã làm tốt trong kỳ thi này!
Đề thi vào chuyên môn Toán năm 2020 2021 sở GD ĐT Hà Nội (chuyên)
Nội dung Đề thi vào chuyên môn Toán năm 2020 2021 sở GD ĐT Hà Nội (chuyên) Bản PDF - Nội dung bài viết Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Hà Nội Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Hà Nội Đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài là 150 phút, kỳ thi diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020. Đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội: + Cho một bảng ô vuông kích thước 6 x 7 được tạo bởi các ô vuông kích thước 1 x 1. Tô màu vào các ô sao cho trong mỗi bảng ô vuông kích thước 2 x 3 hoặc 3 x 2, có ít nhất hai ô được tô màu đen có chung cạnh. Gọi m là số ô vuông được tô màu đen, hỏi có bao nhiêu cách tô sao cho m = 20 và tìm giá trị nhỏ nhất của m? + Cho tam giác ABC có ba góc nhọn và AB < AC. Khi gọi (I) là đường tròn nội tiếp tam giác ABC và K là tâm đường tròn ngoại tiếp trong góc A, chân các đường thẳng vuông góc từ I đến BC, CA, AB lần lượt là D, E, F. Đường thẳng AD cắt (I) tại M. Đường thẳng qua K song song với AD cắt BC tại N. Chứng minh tam giác MFD đồng dạng với tam giác BNK, góc BMF bằng góc DMP và đường tròn ngoại tiếp tam giác MBC đi qua trung điểm của KN. + Cho đa thức P(x) thỏa P(1) = 3 và P(3) = 7. Tìm đa thức dư khi chia P(x) cho x^2 - 4x + 3.
Đề thi vào chuyên môn Toán năm 2020 2021 sở GD ĐT Bình Dương (chuyên)
Nội dung Đề thi vào chuyên môn Toán năm 2020 2021 sở GD ĐT Bình Dương (chuyên) Bản PDF - Nội dung bài viết Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Bình Dương Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Bình Dương Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Bình Dương bao gồm 01 trang với 04 bài toán dạng tự luận. Thời gian làm bài là 150 phút, kỳ thi diễn ra vào thứ Sáu ngày 10 tháng 07 năm 2020. Đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Bình Dương: + Cho tam giác ABC cân tại A (BAC > 90 độ) nội tiếp đường tròn (O) bán kính R. Điểm M nằm trên cạnh BC sao cho BM = CM. Gọi D là giao điểm của AM và đường tròn (O) sao cho D khác A, H là trung điểm của BC. Gọi E là điểm chính giữa cung lớn BC, ED cắt BC tại N. a) Chứng minh rằng MA.MD = MB.MC và BN.CM = BM.CN. b) Gọi I là tâm đường tròn ngoại tiếp tam giác BMD. Chứng minh rằng ba điểm B, I, E thẳng hàng. c) Khi 2AB = R, xác định vị trí của M để 2MA + AD đạt giá trị nhỏ nhất. + Với các số thực x, y thỏa mãn 1 ≤ x ≤ y ≤ 5. Tìm giá trị nhỏ nhất của biểu thức: P = 2(x^2 + y^2) + 4(x - y - xy) + 7. + Tìm tất cả các số nguyên x, y thỏa mãn phương trình x^2 + xy + y^2 = x^2.y^2.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6