Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề thể tích khối đa diện - Phạm Thu Hiền

Tài liệu gồm 30 trang hệ thống hóa lý thuyết thể tích khối đa diện và hướng dẫn giải một số bài toán thể tích khối đa diện điển hình. Chuyên đề chủ yếu xoay quanh các bài toán THPT, hi vọng sẽ giúp ích được phần nào cho bạn đọc, đặc biệt là các bạn học sinh 12. Nội dung chuyên đề: Vấn đề 1 : Thể tích vật thể Thể tích vật thể K là phần mà vật thể đó chiếm chổ trong không gian Thể tích của vật thể K được kí hiệu V. V là một số lớn hơn 0 thỏa mãn các tính chất sau: 1. Hai khối đa diện bằng nhau thì thể tích bằng nhau 2. Thể tích khối lập phương bằng 1 thì V = 1 3. Nếu một khối đa diện được phân chia thành các khối đa diện thì thể tích khối ban đầu bằng tổng thể tích các khối đã phân chia Vấn đề 2 : Thể tích khối chóp Để tính thể tích khối chóp ta cần tính được chiều cao và diện tích đáy [ads] 1. Tính chiều cao Ta chính xác hóa chân đường cao + Hai đường xiên bằng nhau khi và chỉ khi hai hình chiếu bằng nhau, suy ra hình chóp có các cạnh bên bằng nha thì chân đường cao là tâm đường tròn ngoại tiếp đa giác đáy + Hai mặt phẳng vuông góc với nhau. Đường thẳng nào nằm trong mặt phẳng này mà vuông góc với giao tuyến thì vuông góc với mặt phẳng kia. Suy ra cách tìm hình chiếu H của A trên mp (P): • Tìm mặt phẳng pQq chứa A sao cho (Q) ⊥ (P) • Xác định giao tuyến d của (P) và (Q) • Trong (Q) dựng AH ⊥ d tại H + Hai mặt phẳng cắt nhau cùng vuông góc với một mặt phẳng thì giao tuyến của nó vuông góc với mặt phẳng đó + Hình chóp có các mặt bên tạo với đáy một góc bằng nhau thì chân đường cao trùng với tâm đường tròn nội tiếp đa giác đáy 2. Tính diện tích đáy: Sử dung các công thức tính diện tích tam giác, tứ giác … Vấn đề 3 : Thể tích khối lăng trụ 1. Công thức tính thể tích khối lăng trụ V = B.h, với B là diện tích đáy, h là chiều cao 2. Một số hình lăng trụ đặc biệt a. Hình lăng trụ đứng: Lăng trụ có cạnh bên vuông với đáy b. Hình lăng trụ đều : Lăng trụ đứng và đáy là đa giác đều c. Hình hộp : Lăng trụ và đáy là hình bình hành d. Hình hộp đứng: Lăng trụ đứng và đáy là hình bình hành Vấn đề 4 : Tỉ số thể tích

Nguồn: toanmath.com

Đăng nhập để đọc

Một số dạng toán liên quan đến thể tích khối lăng trụ
Tài liệu gồm 40 trang, được biên soạn bởi thầy giáo Lê Bá Bảo, hướng dẫn giải một số dạng toán liên quan đến thể tích khối lăng trụ trong chuyên đề thể tích khối đa diện môn Toán 12. Dạng 1 : Khối lăng trụ có cạnh bên vuông góc với đáy. Phương pháp: Cho hình lăng trụ đứng ABC A B C. + Đường cao: AA. + Thể tích khối lăng trụ: V AA SABC. Dạng 2 : Khối lăng trụ đều. Phương pháp: Cho hình lăng trụ tam giác đều ABC A B C. + Đường cao: AA. + Thể tích khối lăng trụ: V AA SABC. Phương pháp: Cho hình lăng trụ tứ giác đều ABC A B C. + Đường cao: AA. + Thể tích khối lăng trụ: V AA SABCD. Dạng 3 : Khối hộp chữ nhật – Khối lập phương. Phương pháp: Cho hình hộp chữ nhật ABCD A B C D. Thể tích khối hộp: V abc. Phương pháp: Cho hình lập phương ABCD A B C D. + Thể tích khối lập phương: 3 V a. Dạng 4 : Khối lăng trụ xiên bất kì. Phương pháp: Cho hình lăng trụ ABC A B C. + Đường cao: AH H là hình chiếu vuông góc của A trên ABC. + Thể tích khối lăng trụ: V AH SABC.
Một số dạng toán liên quan đến thể tích khối chóp
Tài liệu gồm 50 trang, được biên soạn bởi thầy giáo Lê Bá Bảo, hướng dẫn giải một số dạng toán liên quan đến thể tích khối chóp trong chuyên đề thể tích khối đa diện môn Toán 12. Dạng 1 : Khối chóp có cạnh bên vuông góc với đáy. Phương pháp: Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng đáy. + Đường cao: SA. + Thể tích khối chóp: V = 1/3.SA.SABCD. Dạng 2 : Khối chóp có mặt bên là tam giác cân tại S và vuông góc với đáy. Phương pháp: Cho hình chóp S.ABCD có mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. + Đường cao: SH H là trung điểm AB. + Thể tích khối chóp: V = 1/3.SH.SABCD. Dạng 3 : Khối chóp có hình chiếu của S trên mặt đáy là điểm H. Phương pháp: Cho hình chóp S.ABC có điểm H là hình chiếu vuông góc của S trên mặt đáy. + Đường cao: SH. + Thể tích khối chóp: V = 1/3.SH.SABC. Dạng 4 : Khối chóp có hai mặt bên cùng vuông góc với mặt đáy. Phương pháp: Cho hình chóp S.ABCD có hai mặt (SAB) và (SBC) cùng vuông góc với mặt phẳng đáy. + Đường cao: SB. + Thể tích khối chóp: V = 1/3.SB.SABCD. Dạng 5 : Khối chóp đều. Phương pháp: Cho hình chóp tam giác đều S.ABC. + Đường cao: SG với G là trọng tâm tam giác ABC. + Thể tích khối chóp: V = 1/3.SG.SABC. Phương pháp: Cho hình chóp tứ giác đều S.ABCD. + Đường cao: SO với O là tâm hình vuông ABCD. + Thể tích khối chóp: V = 1/3.SO.SABCD. BÀI TẬP TRẮC NGHIỆM MINH HỌA. BÀI TẬP TRẮC NGHIỆM TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Một số ứng dụng hay về tỷ số thể tích trong việc giải toán trắc nghiệm
Tài liệu gồm 105 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, trình bày một số ứng dụng hay về tỷ số thể tích trong việc giải toán trắc nghiệm. Từ khi Bộ Giáo Dục và Đào Tạo chuyển hướng sang thi trắc nghiệm, việc dạy và học môn toán cũng có sự thay đổi để đáp ứng đối với kì thi. Giáo viên phải dạy học sinh hiểu rõ bản chất và cách làm nhanh nhất để đi đến kết quả. Còn học sinh mong muốn mình giải quyết một bài toán với con đường đơn giản nhất và đáp số chính xác nhất. Sau đây tôi xin biên soạn lại một vấn đề rất hay gặp trong các kì thi thử và thi THPTQG, giúp các em học sinh giải quyết rất nhanh các bài toán liên quan đến thể tích khối đa diện. I. KIẾN THỨC CƠ SỞ + Hai hình chóp có cùng diện tích đáy thì tỷ số thể tích của chúng chính là tỷ số của đường cao và ngược lại. + Với khối chóp tam giác ta có tính chất quen thuộc sau: Cho khối chóp tam giác S ABC. Mặt phẳng (P) cắt các đường thẳng SA SB SC lần lượt tại A B C. Khi đó ta có S ABC V SA SB SC V SA SB SC. II. MỘT SỐ TÍNH CHẤT 1. Tính chất 1. Cho hình chóp S ABCD đáy ABCD là hình bình hành. Mặt phẳng (P) SA SB SC SD lần lượt tại A B C D. Khi đó ta có SA SC SB SD SA SC SB SD. 2. Tính chất 2. Cho lăng trụ 1 1 1 ABC A B C có các điểm M N P lần lượt thuộc các cạnh 1 1 1 AA BB CC sao cho 1 1 1 AM BN CP x y z AA BB CC. Khi đó ta có tỷ số 1 1 1 3 ABCMNP ABC A B C V x y z. 3. Tính chất 3. Cho hình hộp ABCD A B C D. Mặt phẳng cắt các cạnh AA BB CC DD lần lượt tại M N P Q sao cho DD AM BN CP DQ x y z t AA BB CC. Khi đó ta có: a. x z y t. b. 4 2 2 ABCDMNQP ABCD A B C D V x y z t x z y t. III. MỘT SỐ BÀI TẬP ÁP DỤNG
Bài giảng phương pháp trải hình trên mặt phẳng - Trần Thị Hiền
Tài liệu gồm 17 trang, được biên soạn bởi cô giáo Trần Thị Hiền (Tổ Toán trường THPT chuyên Hạ Long, tỉnh Quảng Ninh), hướng dẫn phương pháp trải hình trên mặt phẳng để giải nhanh một số bài toán về hình học không gian. Khi giải một bài toán về tứ diện mà các dữ kiện của nó liên quan đến tổng các góc phẳng hoặc tổng các cạnh … thì việc phẳng hoá tứ diện (tức là trải phẳng tứ diện đó lên một mặt phẳng) sao cho phù hợp sẽ cho ta một lời giải gọn gàng và dễ hiểu. Trong bài viết nhỏ này tôi xin trình bày một số bài toán áp dụng phương pháp này.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6