Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề số phức và ứng dụng - Nguyễn Đăng Ái

Chuyên đề số phức và ứng dụng do thầy Nguyễn Đăng Ái biên soạn gồm 369 trang, bao gồm lý thuyết, phân dạng và hướng dẫn giải, ví dụ minh họa và bài tập có lời giải chi tiết chủ đề số phức. Nội dung tài liệu : I. CƠ BẢN VÀ CÁC PHÉP TOÁN TRÊN TẬP SỐ PHỨC 1.1 Các định nghĩa về tập số phức C 1.2. Các phép toán trên tập số phức 1.3. Các tính chất cơ bản của số phức 1.4. Lũy thừa của số ảo in – Cấp số cộng và cấp số nhân trong số phức 1.5. Hàm số phức – Bài toán đồng nhất hàm bằng số ảo f(i) = Ai + B II. DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC – CÔNG THỨC Ơ LE 2.1. Cách chuyển từ dạng đại số sang dạng lượng giác của một số phức 2.2. Ứng dụng của dạng lượng giác – Công thức Ơ le – Công thức Moivre cơ bản 2.3. Ứng dụng dạng lượng giác vào một số bài toán cực trị lũy thừa lớn 2.4. Ứng dụng dạng lượng giác vào một số bài toán số phức có mô đun bằng 1 III. PHƯƠNG TRÌNH BẬC NHẤT – HỆ PHƯƠNG TRÌNH BẬC NHẤT 3.1. Phương trình bậc nhất chứa một biến 3.2. Phương trình bậc nhất chứa hai biến 3.3. Biện luận theo tham số phức một phương trình bậc nhất phức 3.4. Hệ phương trình bậc nhất trong số phức IV. CĂN BẬC HAI – PHƯƠNG TRÌNH BẬC CAO – XỬ LÍ MÔ ĐUN 4.1. Căn bậc hai của một số âm 4.2. Căn bậc hai của một số phức 4.3. Phương trình bậc 2 trên tập số phức 4.4. Phương trình bậc cao – Phân tích nhân tử – Đặt ẩn phụ – Khai căn thức 4.5. Các định lí VIET áp dụng vào phương trình bậc cao trắc nghiệm phức 4.6. Phương trình phức dạng đa thức với các hệ số thực 4.7. Xử lí mô đun trong các phương trình phức V. BẤT ĐẲNG THỨC ĐẠI SỐ PHỨC – BÀI TOÁN CỰC TRỊ ĐẠI SỐ 5.1. Bất đẳng thức tam giác – Bài toán số phức đồng dạng 5.2. Bất đẳng thức CÔ SI – Bất đẳng thức BUNHIA vận dụng trong số phức 5.3. Một số bất đẳng thức không mẫu mực trong số phức VI. MẶT PHẲNG PHỨC – GIẢI TÍCH TRÊN MẶT PHẲNG PHỨC 6.1. Biểu diễn điểm và các công thức cơ bản trên mặt phẳng phức 6.2. Bất đẳng thức tam giác ứng dụng vào một số bất đẳng thức hình học 6.3. Quỹ tích là đường thẳng trên mặt phẳng phức 6.4. Quỹ tích là đường tròn trên mặt phẳng phức 6.5. Elip trong mặt phẳng phức – Các bài toán nâng cao 6.6. Quỹ tích là đường hypebol cơ bản 6.7. Các đường cong bất kì: Đường thẳng – Đường tròn – Elip – Hypebol – Parabol 6.8. Phép quay trong số phức – Nâng cao tư duy véc tơ phức 6.9. Bài toán tương giao trên mặt phẳng phức – Hệ phương trình mô đun phức 6.10. Biểu diễn số phức là một miền trên hình phẳng – Cực trị phức trên miền D 6.11. Bài toán tâm tỉ cự trên mặt phẳng phức 6.12. Bình phương vô hướng ứng dụng trên mặt phẳng phức 6.13. Các số phức có mô đun bằng nhau – Bài toán phân bố véc tơ trên vòng tròn

Nguồn: toanmath.com

Đăng nhập để đọc

Áp dụng bất đẳng thức Minkowski giải bài toán cực trị số phức và Oxyz
Tài liệu gồm 15 trang, được biên soạn bởi thầy giáo Vũ Quốc Triệu, hướng dẫn áp dụng bất đẳng thức Minkowski để giải quyết một số bài toán nâng cao về số phức và hình học giải tích Oxyz có liên quan đến giá trị lớn nhất / nhỏ nhất. A. BẤT ĐẲNG THỨC MINKOWSKI. Hermann Minkowski (1864 – 1909) là một nhà Toán học sinh tại Aleksotas (ngoại ô của Kaunas, Litva) trong một gia đình gốc Đức, Ba Lan và Do Thái. Tại Đức,Ông học ở Đại học Berlin và Königsberg, nơi ông nhận học vị tiến sĩ năm 1885 dưới sự hướng dẫn của Ferdinand von Lindemann. Khi còn là sinh viên tại Königsberg, năm 1883 Ông đã được nhận giải thưởng Toán học của Viện khoa học Pháp cho các công trình về lý thuyết các dạng Toàn phương. Hermann Minkowski đã dạy tại đại học Bonn, Göttingen, Königsberg và Zurich. Tại viện Bách Khoa liên bang (Federal Polytechnic Institute), nay là ETH Zurich, ông là một trong những thầy giáo của Albert Einstein (1979 – 1955). Bất đẳng thức Minkowski được chứng minh dễ dàng bằng phương pháp véctơ nên có thể gọi là bất đẳng thức “độ dài véctơ”. B. ÁP DỤNG. C. BÀI TẬP TỰ LUYỆN.
Ôn tập vận dụng cao tổng hợp số phức thi TN THPT 2023 môn Toán
Tài liệu gồm 74 trang, được biên soạn bởi thầy giáo Đặng Công Đức (Facebook: Giang Sơn), tuyển tập các bài tập trắc nghiệm ôn tập vận dụng cao tổng hợp số phức, giúp học sinh lớp 12 tham khảo trong quá trình ôn thi tốt nghiệp THPT năm 2023 môn Toán. ÔN TẬP VẬN DỤNG CAO TỔNG HỢP SỐ PHỨC MÙA THI 2023: 1. Dung Lượng: 36 File Bài Tập Số Phức Nâng Cao Tổng Hợp (P1 – P36). 2. Nội Dung Bài Tập: + Biến Đổi Số Phức Nâng Cao. + Quỹ Tích Số Phức Nâng Cao. + Phương Trình Phức Nâng Cao. + Cực Trị Số Phức Có Yếu Tố Đường Tròn. + Cực Trị Số Phức Có Yếu Tố Đoạn Thẳng, Đường Thẳng, Tia, Nửa Mặt Phẳng. + Cực Trị Số Phức Có Yếu Tố Ba Đường Conic. + Cực Trị Số Phức Có Yếu Tố Đối Xứng, Tâm Tỉ Cự, Tích Vô Hướng, Tam Giác Đồng Dạng. + Cực Trị Số Phức Có Yếu Tố Hình Học Hỗn Hợp. + Cực Trị Số Phức Sử Dụng Bất Đẳng Thức Đại Số, Lượng Giác, Khảo Sát Hàm Số. + Ứng Dụng Số Phức Trong Giải Hệ Phương Trình, Nhị Thức Newton.
20 kĩ thuật chinh phục vận dụng cao số phức - Hoàng Xuân Nhàn
Tài liệu gồm 151 trang, được biên soạn bởi thầy giáo Hoàng Xuân Nhàn, hướng dẫn 20 kĩ thuật chinh phục bài toán vận dụng cao số phức trong chương trình Giải tích 12 chương 4. MỤC LỤC : TÓM TẮT KIẾN THỨC TRỌNG YẾU – Trang 01. CHỦ ĐỀ 01 . SỐ PHỨC VÀ CÁC PHÉP TOÁN – Trang 09. + Dạng 1. Tính toán, rút gọn số phức dựa vào qui luật dãy số – Trang 09. + Dạng 2. Lập phương trình, hệ phương trình xác định số phức – Trang 12. + Dạng 3. Phương pháp lấy mô-đun hai vế đẳng thức – Trang 15. + Dạng 4. Phương pháp tạo số phức liên hợp – Trang 17. + Dạng 5. Phương pháp chuẩn hóa số phức – Trang 21. Bài tập trắc nghiệm thực hành chủ đề 1 – Trang 24. Hướng dẫn giải bài tập trắc nghiệm chủ đề 1 – Trang 28. CHỦ ĐỀ 02 . PHƯƠNG TRÌNH SỐ PHỨC – Trang 42. Tóm tắt lí thuyết – Trang 42. + Dạng 1. Giải phương trình số phức bậc hai, bậc ba, bậc bốn – Trang 45. + Dạng 2. Phương trình số phức có chứa tham số – Trang 51. Bài tập trắc nghiệm thực hành chủ đề 2 – Trang 57. Hướng dẫn giải bài tập trắc nghiệm chủ đề 2 – Trang 60. CHỦ ĐỀ 03 . MAX-MIN MÔ ĐUN SỐ PHỨC – Trang 72. Tóm tắt lí thuyết – Trang 72. + Dạng 1. Số phức có điểm biểu diễn thuộc đường cơ bản – Trang 76. + Dạng 2. Điều kiện ba điểm thẳng hàng và kĩ thuật đối xứng – Trang 83. + Dạng 3. Dùng miền nghiệm tìm Max-min mô-đun số phức – Trang 90. + Dạng 4. Ép điểm theo quỹ đạo đường tròn – Trang 92. + Dạng 5. Tạo cụm liên hợp chéo – Trang 96. + Dạng 6. Sử dụng tâm tỉ cự – Trang 98. + Dạng 7. Tạo tam giác đồng dạng và tam giác bằng nhau – Trang 105. + Dạng 8. Biện luận sự tương giao đường thẳng và đường tròn – Trang 109. + Dạng 9. Bất đẳng thức tam giác – Trang 112. + Dạng 10. Bất đẳng thức Mincowski và kĩ thuật cân bằng hệ số – Trang 116. + Dạng 11. Bất đẳng thức Cauchy Schwarz – Trang 120. + Dạng 12. Kĩ thuật đổi biến và khảo sát hàm số – Trang 123. + Dạng 13. Phương pháp lượng giác hóa số phức – Trang 126. Bài tập trắc nghiệm thực hành chủ đề 3 – Trang 129. Hướng dẫn giải bài tập trắc nghiệm chủ đề 3 – Trang 132.
Ngân hàng câu hỏi số phức Bài toán tìm số phức - Lê Bá Bảo
Tài liệu gồm 27 trang, được biên soạn bởi thầy giáo Lê Bá Bảo (GV trường THPT Đặng Huy Trứ – Admin CLB Giáo Viên Trẻ TP Huế), tuyển chọn 50 bài toán trắc nghiệm liên quan đến tìm số phức, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4 và luyện thi THPT Quốc gia môn Toán. Trích dẫn tài liệu Ngân hàng câu hỏi số phức: Bài toán tìm số phức – Lê Bá Bảo : + Cho hai số phức 1 2 z z khác 0, thỏa mãn 2 2 1 2 1 2 z z. M N lần lượt là hai điểm biểu diễn số phức 1 2 z z trên mặt phẳng Oxy. Mệnh đề nào sau đây đúng? A. Tam giác OMN nhọn và không đều. B. Tam giác OMN đều. C. Tam giác OMN tù. D. Tam giác OMN vuông. + Cho số phức 2 z m m i 3 (1) với m là tham số thực thay đổi. Tập hợp các điểm biểu diễn số phức z thuộc đường cong. Tính diện tích hình phẳng giới hạn bởi đường cong đó và trục hoành. + Cho số phức z a bi a b. Biết tập hợp các điểm A biểu diễn hình học số phức z là đường tròn C có tâm I 43 và bán kính R 3. Đặt M là giá trị lớn nhất, m là giá trị nhỏ nhất của F a b 4 3 1. Tính giá trị M + m.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6