Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Sóc Trăng

Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Sóc Trăng Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển học sinh giỏi THPT dự thi cấp Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Sóc Trăng; kỳ thi được diễn ra vào ngày 29 và 30 tháng 09 năm 2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Sóc Trăng : + Với số thực a, xét dãy số (un) xác định bởi. a) Chứng minh rằng với mọi số a hữu tỷ, các số hạng của dãy số (un) luôn xác định. b) Với a thuộc [0;1), chứng minh rằng dãy số (vn) xác định bởi vn = n2un với mọi n = 1; 2; … luôn có giới hạn hữu hạn, tìm giới hạn đó. + Cho bảng ô vuông 12 × 12 được chia thành 144 ô phân biệt. Một hình chữ Z (nằm dọc hoặc nằm ngang, gồm 4 ô vuông) được tạo thành từ bảng 3 × 2 hoặc 2 × 3 cắt bỏ đi hai ô ở góc đối diện như các hình bên dưới. a) Người ta muốn tô màu mỗi ô của bảng 12 × 12 ở trên bởi 2 màu xanh, đỏ sao cho trong mỗi hình chữ Z bất kỳ, luôn có đúng 2 ô xanh và 2 ô đỏ. Chứng minh rằng nếu trên cột 1 có hai ô liên tiếp được tô đỏ thì toàn bộ các ô ở cột 12 đều được tô xanh. b) Tính số cách điền các số từ 1; 2; 3; …; 144 lên bảng và mỗi số điền cho đúng một ô sao cho với mỗi hình chữ Z có trong bảng, số lượng số chẵn bằng số lượng số lẻ. c) Hỏi có tồn tại hay không cách điền số các số từ 1; 2; 3; …; 144 lên bảng, mỗi số điền cho đúng một ô sao cho với mỗi hình chữ Z có trong bảng, tổng các số trên đó đều chia hết cho 3? + Xét tam giác ABC nhọn, không cân có AB < AC nội tiếp trong đường tròn (O) với B, C cố định và A thay đổi trên (O). Các đường cao AD, BE, CF đồng quy tại H. Gọi M là trung điểm của BC. Lấy I đối xứng với A qua EF và đường tròn ngoại tiếp tam giác IMO cắt lại AM tại L. a) Chứng minh rằng L luôn thuộc một đường tròn cố định khi A di động trên (O). b) Đường tròn ngoại tiếp tam giác AHC cắt lại BC tại R, EF cắt BC tại T, AR cắt DE tại G. Chứng minh rằng nếu G là trung điểm của đoạn thẳng DE thì F là trung điểm của đoạn thẳng ET.

Nguồn: sytu.vn

Đăng nhập để đọc

Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2018 2019 sở GD ĐT Bắc Giang
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2018 2019 sở GD ĐT Bắc Giang Bản PDF Thứ Bảy ngày 16 tháng 03 năm 2019, sở Giáo dục và Đào tạo Bắc Giang tổ chức kỳ thi chọn học sinh giỏi văn hóa cấp tỉnh môn Toán lớp 12 năm học 2018 – 2019, đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2018 – 2019 sở GD&ĐT Bắc Giang được biên soạn theo hình thức kết hợp giữa trắc nghiệm khách quan và tự luận, trong đó phần trắc nghiệm gồm 40 câu, chiếm 14 điểm, phần tự luận gồm 03 câu, chiếm 06 điểm, thời gian làm bài 120 phút. Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2018 – 2019 sở GD&ĐT Bắc Giang : + Cho hai đường thẳng Ax, By chéo nhau và vuông góc với nhau, có AB là đoạn vuông góc chung của hai đường thẳng đó và AB = a. Hai điểm M và N lần lượt di động trên Ax và By sao cho MN = b. Xác định độ dài đoạn thẳng AM theo a và b sao cho thể tích tứ diện ABMN đạt giá trị lớn nhất. [ads] + Trong không gian Oxyz, cho các điểm A(1;0;0), B(-2;0;3), M(0;0;1) và N(0;3;1). Mặt phẳng (P) đi qua các điểm M, N sao cho khoảng cách từ điển B đến (P) gấp hai lần khoảng cách từ điểm A đến (P). Có bao nhiêu mặt phẳng (P) như vậy? A. Có vô số mặt phẳng (P). B. Có hai mặt phẳng (P). C. Chỉ có một mặt phẳng (P). D. Không có mặt phẳng (P) nào. + Cho tập hợp S = {1;2;3;4;5;6;7;8;9;10}. Hỏi có bao nhiêu cách chia tập S thành ba tập con khác rỗng sao cho trong mỗi tập con đó không có hai số nguyên liên tiếp nào?
Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2018 2019 sở GD ĐT Đồng Tháp
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2018 2019 sở GD ĐT Đồng Tháp Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm học 2018 – 2019 sở GD&ĐT Đồng Tháp; đề thi có đáp án và lời giải chi tiết, kỳ thi được diễn ra vào ngày 03 tháng 03 năm 2019.
Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2018 2019 sở GD ĐT Bắc Ninh
Nội dung Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2018 2019 sở GD ĐT Bắc Ninh Bản PDF Thứ Sáu ngày 15 tháng 03 năm 2019, sở Giáo dục và Đào tạo tỉnh Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2018 – 2019, đây là kỳ thi nhằm phát hiện và tuyển chọn những em học sinh lớp 12 giỏi môn Toán đang học tập tại các trường THPT trên địa bàn tỉnh Bắc Ninh, các em được chọn sẽ là những tấm gương tiêu biểu trong học tập cho học sinh toàn tỉnh. Đề thi học sinh giỏi tỉnh Toán lớp 12 năm 2018 – 2019 sở GD&ĐT Bắc Ninh có mã đề 485 được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, học sinh làm bài trong 90 phút. [ads] Trích dẫn đề thi học sinh giỏi tỉnh Toán lớp 12 năm 2018 – 2019 sở GD&ĐT Bắc Ninh : + . Mệnh đề nào dưới đây SAI? A. Hai khối lăng trụ có diện tích đáy và chiều cao tương ứng bằng nhau thì có thể tích bằng nhau. B. Hai khối chóp có diện tích đáy và chiều cao tương ứng bằng nhau thì có thể tích bằng nhau. C. Hai khối lập phương có diện tích toàn phần bằng nhau thì có thể tích bằng nhau. D. Hai khối hộp chữ nhật có diện tích toàn phần bằng nhau thì có thể tích bằng nhau. + Trong không gian với hệ tọa độ Oxyz, cho ba điểm M(6;0;0), (0;6;0), P(0;0;6). Hai mặt câu có phương trình (S1): x^2 + y^2 + z^2 – 2x – 2y + 1 = 0 và (S2): x^2 + y^2 + z^2 – 8x + 2y + 2z + 1 = 0 cắt nhau theo đường tròn (C). Hỏi có bao nhiêu mặt cầu có tâm thuộc mặt phẳng chứa (C) và tiếp xúc với ba đường thẳng MN, NP, PM? + Cho hàm số y = (m – 3)x – 2m + 1 có đồ thị là đường thẳng d. Gọi S là tập các giá trị của tham số m để đường thẳng d cắt trục Ox, Oy lần lượt tại hai điểm A, B sao cho tam giác OAB cân. Số tập con của tập S là?
Đề thi học sinh giỏi lớp 12 môn Toán THPT năm 2018 – 2019 sở GD ĐT Hà Nam
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán THPT năm 2018 – 2019 sở GD ĐT Hà Nam Bản PDF Vừa qua, sở Giáo dục và Đào tạo Hà Nam đã tổ chức kỳ thi chọn học sinh giỏi khối THPT năm học 2018 – 2019 môn Toán dành cho học sinh lớp 12, đề thi học sinh giỏi Toán lớp 12 THPT năm 2018 – 2019 sở GD&ĐT Hà Nam được biên soạn theo hình thức tự luận với 06 bài toán, thời gian làm bài 180 phút. Trích dẫn đề thi học sinh giỏi Toán lớp 12 THPT năm 2018 – 2019 sở GD&ĐT Hà Nam : + Trong mặt phẳng với hệ tọa độ Oxy, cho hàm số y = (x + 2)/(x – 1) có đồ thị (C). Có bao nhiêu điểm M thuộc trục Oy, có tung độ là số nguyên nhỏ hơn 2019 và thỏa mãn từ điểm M kẻ được 2 tiếp tuyến tới đồ thị (C) sao cho 2 tiếp điểm tương ứng nằm về 2 phía của trục Ox? [ads] + Cho tứ diện đều ABCD có cạnh bằng 1. Gọi M, N là hai điểm thay đổi lần lượt thuộc các cạnh AB, AC sao cho mặt phẳng (DMN) luôn vuông góc với mặt phẳng (ABC). Đặt AM = x, AN = y. Tìm x, y để tam giác DMN có diện tích nhỏ nhất, lớn nhất. + Cho hàm số y = mx^3 – 3mx^2 + (2m + 1)x + 3 – m (1), với m là tham số thực. Tìm tất cả các giá trị của m để đồ thị hàm số (1) có hai điểm cực trị A và B sao cho khoảng cách từ điểm I(1/2,15/4) đến đường thẳng AB đạt giá trị lớn nhất.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6