Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 11 lần 2 năm 2020 - 2021 trường THPT Đồng Đậu - Vĩnh Phúc

Đề thi HSG Toán 11 lần 2 năm học 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc gồm 02 trang với 10 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 11 lần 2 năm 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc : + Một thợ thủ công muốn vẽ trang trí trên một hình vuông kích thước 4m x 4m, bằng cách vẽ một hình vuông mới với các đỉnh là trung điểm các cạnh của hình vuông ban đầu và tô kín màu lên hai tam giác đối diện (như hình vẽ). Quá trình vẽ và tô theo qui luật đó được lặp lại 5 lần. Tính số tiền nước sơn để người thợ thủ công đó hoàn thành trang trí hình vuông như trên? Biết tiền nước sơn để sơn 1m2 là 50.000 đồng. + Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD, có đỉnh A(-3;1), đỉnh C nằm trên đường thẳng d: x – 2y – 5 = 0. Trên tia đối của tia CD lấy điểm E sao cho CE = CD, biết N(6;-2) là hình chiếu vuông góc của D lên đường thẳng BE. Xác định tọa độ các đỉnh còn lại của hình chữ nhật ABCD. + Cho hình hộp ABCD.A’B’C’D’. Trên các đoạn thẳng AD’ và C’D lần lượt lấy hai điểm M, N sao cho đường thẳng MN song song với đường thẳng nối tâm của hình bình hành ABB’A’ và trung điểm của cạnh BC. Tính tỷ số MN/A’C.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề học sinh giỏi Toán 11 lần 1 năm 2023 - 2024 trường THPT Vĩnh Lộc - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 lần 1 năm học 2023 – 2024 trường THPT Vĩnh Lộc, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 07 tháng 04 năm 2024; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi Toán 11 lần 1 năm 2023 – 2024 trường THPT Vĩnh Lộc – Thanh Hóa : + Trong môi trường nuôi cấy ổn định người ta nhận thấy rằng: cứ sau đúng 5 ngày số lượng loài của vi khuẩn A tăng lên gấp đôi, còn sau đúng 10 ngày số lượng loài của vi khuẩn B tăng lên gấp ba. Giả sử ban đầu có 50 con vi khuẩn A và 100 con vi khuẩn B, hỏi sau bao nhiêu ngày nuôi cấy trong môi trường đó thì số lượng vi khuẩn của cả hai loài bằng 20900 con, biết rằng tốc độ tăng trưởng của mỗi loài ở mọi thời điểm là như nhau? + Trong không gian với hệ tọa độ Oxyz, xét đường thẳng ∆ đi qua điểm A(0;0;1) và vuông góc với mặt phẳng Ozx. Cho điểm B(0;4;0) với điểm C là điểm cách đều đường thẳng ∆ và trục Ox. Các mệnh đề sau đúng hay sai? a) Vectơ pháp tuyến của mặt phẳng Oyz là: n(1;0;0). b) Phương trình mặt phẳng trung trực của OA là: 1 0 2 z. c) Điểm C không thuộc mặt phẳng trung trực đoạn OA. d) Khoảng cách nhỏ nhất giữa điểm B và C là: 1 2. + Thời gian (phút) truy cập Internet mỗi buổi tối của một số học sinh được cho trong bảng sau: Các mệnh đề sau đúng hay sai? a) mốt của mẫu số liệu là 24. b) Cỡ của mẫu số liệu bằng 3. c) Số trung vị của mẫu số liệu ghép nhóm ở bảng trên là 18,2. d) Tứ phân vị thứ nhất của mẫu của mẫu số liệu là 15,25.
Đề học sinh giỏi Toán 11 năm 2023 - 2024 trường THPT Hậu Lộc 4 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 năm học 2023 – 2024 trường THPT Hậu Lộc 4, tỉnh Thanh Hóa. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với nội dung gồm 03 phần: Câu hỏi trắc nghiệm có nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn. Đề thi có đáp án và hướng dẫn chấm điểm mã đề 001 002 003 004. Trích dẫn Đề học sinh giỏi Toán 11 năm 2023 – 2024 trường THPT Hậu Lộc 4 – Thanh Hóa : + Khi gửi tiền trong ngân hàng, anh An gửi 500 triệu đồng theo hình thức lãi kép kì hạn 1 năm với lãi suất 5,6%/năm. Hỏi sau 3 năm người đó có bao nhiêu tiền cả gốc và lãi? (đơn vị: triệu đồng, kết quả làm tròn đến hàng phần trăm). + Mùa hè năm 2023, để chuẩn bị cho “học kì quân đội” dành cho các bạn nhỏ, một đơn vị bộ đội chuẩn bị thực phẩm cho các bạn nhỏ, dự kiến đủ dùng trong 45 ngày (năng suất ăn của mỗi ngày là như nhau). Nhưng bắt đầu từ ngày thứ 11, do số lượng thành viên tham gia tăng lên, nên lượng tiêu thụ thực phẩm tăng lên 10% mỗi ngày (ngày sau tăng 10% so với ngày trước đó). Hỏi thực tế lượng thức ăn đó đủ dùng cho bao nhiêu ngày? + Cho hình chóp S.ABCD có tất cả các cạnh đều bằng 8. Gọi M là trung điểm của cạnh SB và N là một điểm bất kỳ thuộc cạnh CD sao cho CN x (0 8). Mặt phẳng (α) chứa đường thẳng MN và song song đường thẳng AD cắt hình chóp S.ABCD theo một thiết diện có diện tích nhỏ nhất bằng c 2. Hỏi giá trị c bằng bao nhiêu?
Đề HSG Toán 11 năm 2023 - 2024 cụm trường THPT Gia Lâm Long Biên - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp cụm môn Toán 11 năm học 2023 – 2024 cụm trường THPT Gia Lâm & Long Biên, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 11 năm 2023 – 2024 cụm trường THPT Gia Lâm & Long Biên – Hà Nội : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a. Đường thẳng SA vuông góc với mặt phẳng ABCD SA a 2. 1) Tính góc giữa hai đường thẳng AD và SC. 2) Mặt phẳng đi qua A và vuông góc với SC cắt các cạnh SB SC SD lần lượt tại các điểm E F I. Chứng minh đường thẳng IE song song với đường thẳng BD. 3) Gọi H là giao điểm của hai đường thẳng AF và IE. Tính tỉ số AH AF.4) Gọi M là một điểm thay đổi trên cạnh CD M (khác C và D). Mặt phẳng qua M và vuông góc với CD cắt các cạnh SC SB lần lượt tại N và P. Tìm giá trị lớn nhất của diện tích tam giác MNP. + Cho phương trình sin cos 2 cos. 1) Giải phương trình đã cho. 2) Tính tổng các nghiệm của phương trình trong khoảng 0 20.
Đề Olimpic Toán 11 năm 2023 - 2024 cụm Thạch Thất Quốc Oai - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi Olimpic cấp cụm môn Toán 11 năm học 2023 – 2024 cụm Thạch Thất & Quốc Oai, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề Olimpic Toán 11 năm 2023 – 2024 cụm Thạch Thất & Quốc Oai – Hà Nội : + Cho hình chóp S.ABC có đáy là tam giác đều cạnh a SA SB SC đường cao SO của hình chóp S.ABC có độ dài bằng 2a. a) Chứng minh rằng SA BC. b) M là điểm thuộc đường cao AH của tam giác ABC (M khác A và H). Mặt phẳng P đi qua M và vuông góc với AH cắt hình chóp theo thiết diện. Tìm vị trí của M để diện tích thiết diện lớn nhất. + Cho các số 5 2 x y theo thứ tự lập thành cấp số cộng, các số theo thứ tự lập thành cấp số nhân. Tìm x y. + Gieo một con xúc sắc 4 lần. Tính xác suất để mặt 6 chấm xuất hiện ít nhất 1 lần.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6