Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra khảo sát lớp 12 môn Toán THPT năm 2019 sở GD ĐT Hà Nội

Nội dung Đề kiểm tra khảo sát lớp 12 môn Toán THPT năm 2019 sở GD ĐT Hà Nội Bản PDF Chiều thứ Tư ngày 27 tháng 03 năm 2019, sở Giáo dục và Đào tạo Hà Nội tổ chức kỳ thi kiểm tra khảo sát lớp 12 THPT môn Toán năm 2019. Kỳ thi nhằm đánh giá chất lượng học tập môn Toán của các em học sinh khối 12 đang học tập tại các trường THPT trên địa bàn thủ đô Hà Nội trong quá trình các em chuẩn bị cho kỳ thi THPT Quốc gia 2019 môn Toán. Đây cũng là cơ hội cho các em được thử sức để phát hiện những điểm còn yếu về mặt kiến thức môn Toán THPT của bản thân và rèn luyện để có một sự chuẩn bị tốt nhất cho kỳ thi Trung học Phổ thông Quốc gia môn Toán năm học 2018 – 2019 do Bộ Giáo dục và Đào tạo tổ chức vào ngày 25 tháng 06 năm 2019 tới đây. Đề kiểm tra khảo sát Toán lớp 12 THPT năm 2019 sở GD&ĐT Hà Nội được biên soạn dựa theo cấu trúc chuẩn

Nguồn: sytu.vn

Đăng nhập để đọc

Đề KSCL 8 tuần HK1 Toán 12 năm 2019 - 2020 trường chuyên Lê Hồng Phong - Nam Định
Ngày … tháng … năm 2019, trường THPT chuyên Lê Hồng Phong – Nam Định đã tổ chức kì thi khảo sát chất lượng môn Toán 12 trong 8 tuần học đầu tiên của giai đoạn học kì 1 năm học 2019 – 2020. Đề KSCL 8 tuần HK1 Toán 12 năm 2019 – 2020 trường chuyên Lê Hồng Phong – Nam Định có mã đề 132, đề được dành cho các lớp 12 theo học các khối A, B, D, đề gồm 05 trang với 50 câu trắc nghiệm, học sinh có 90 phút để làm bài. Trích dẫn đề KSCL 8 tuần HK1 Toán 12 năm 2019 – 2020 trường chuyên Lê Hồng Phong – Nam Định : + Hình nón (N) có đỉnh S, tâm đường tròn đáy là O, góc ở đỉnh bằng 120 độ. Một mặt phẳng qua S cắt hình nón (N) theo thiết diện là tam giác vuông SAB. Biết khoảng khoảng cách giữa hai đường thẳng AB và SO bằng 3. Tính diện tích xung quanh Sxq của hình nón (N). [ads] + Khối đa diện nào sau đây có các mặt không phải là tam giác đều? A. Khối bát diện đều. B. Khối mười hai mặt đều. C. Khối tứ diện đều. D. Khối hai mươi mặt đều. + Một ô tô đang chuyển động đều với vận tốc 12 (m/s) thì người lái đạp phanh; từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc v(t) = -2t + 12 (m/s) (trong đó t là thời gian tính bằng giây, kể từ lúc đạp phanh). Hỏi trong thời gian 8 giây cuối (tính đến khi xe dừng hẳn) thì ô tô đi được quãng đường bao nhiêu?
Đề KSCL giữa kì 1 Toán 12 năm 2019 - 2020 trường chuyên ĐH Vinh - Nghệ An
Ngày … tháng 11 năm 2019, trường THPT chuyên Đại học Vinh, tỉnh Nghệ An tổ chức kì thi khảo sát chất lượng giữa học kì 1 môn Toán lớp 12 năm học 2019 – 2020. Đề KSCL giữa kì 1 Toán 12 năm 2019 – 2020 trường chuyên ĐH Vinh – Nghệ An có mã đề 209, đề gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, kì thi vừa đánh giá chất lượng giai đoạn giữa HKI, vừa kiểm tra kiến thức ôn tập chuẩn bị cho kì thi THPT Quốc gia môn Toán năm 2020. Trích dẫn đề KSCL giữa kì 1 Toán 12 năm 2019 – 2020 trường chuyên ĐH Vinh – Nghệ An : + Một cốc thủy tinh có dạng hình trụ có bán kính đáy 3cm và chiều cao 8cm, người ta muốn làm hộp giấy cứng dạng hình hộp chữ nhật để đựng cốc (xem hình vẽ). Diện tích phần giấy cứng để làm hộp đựng (vừa khít cốc, kín hai đầu và không tính lề, mép) bằng bao nhiêu? [ads] + Cho hàm số y = x^3 – 2018x có đồ thị (C), điểm M1 thuộc (C) có hoành độ là 1, tiếp tuyến của (C) tại M1 cắt (C) tại M2, tiếp tuyến của (C) tại M2 cắt (C) tại M3, tiếp tuyến của (C) tại M3 cắt (C) tại M4, cứ tiếp tục như thế cho đến khi tiếp tuyến của (C) tại Mn-1 cắt (C) tại Mn(xn;yn) (với n > 1) thỏa mãn: 2018xn + yn + 2^2019 = 0. + Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a và AA’ = 2a. Gọi M, N lần lượt là trung điểm AA’, BB’ và G là trọng tâm tam giác ABC. Mặt phẳng (MNG) cắt BC, CA lần lượt tại F, E. Thể tích khối đa diện có các đỉnh là các điểm A, M, E, B, N, F bằng?
Đề KSCL giữa HK1 Toán 12 năm 2018 - 2019 trường THPT chuyên Đại học Vinh - Nghệ An
Đề KSCL giữa HK1 Toán 12 năm 2018 – 2019 trường THPT chuyên Đại học Vinh – Nghệ An mã đề 132 được biên soạn nhằm giúp nhà trường và giáo viên đánh giá khả năng của từng học sinh để có phương pháp dạy học phù hợp, đề gồm 5 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh có 90 phút để hoàn thành đề thi này. Trích dẫn đề KSCL giữa HK1 Toán 12 năm 2018 – 2019 trường THPT chuyên Đại học Vinh – Nghệ An : + Sinh nhật của An vào ngày 1 tháng 5, Bạn An muốn mua một chiếc máy ảnh giá khoảng 600.000 đồng để làm quà sinh nhật cho chính mình. Bạn ấy quyết định bỏ ống tiết kiệm 10 000 đồng vào ngày 1 tháng 1 của năm đó, sau đó cứ liên tục những ngày sau, mỗi ngày bạn bỏ ống tiết kiện 5 000 đồng. Biết trong năm đó, tháng 1 có 31 ngày, tháng 2 có 28 ngày, tháng 3 có 31 ngày và tháng 4 có 30 ngày. Gọi a (đồng) là số tiền An có được đến sinh nhật của mình (ngày sinh nhật An không bỏ tiền vào ống). Khi đó ta có? [ads] + Trong năm học 2018-2019, Trường THPT Chuyên Đại học Vinh có 13 lớp học sinh khối 10, 12 lớp học sinh khối 11 và 12 lớp học sinh khối 12. Nhân ngày nhà giáo Việt Nam 20 tháng 11 nhà trường chọn ngẫu nhiên 2 lớp trong trường để tham gia hội diễn văn nghệ của Trường Đại học Vinh. Xác suất để 2 lớp được chọn không cùng một khối là? + Một vật chuyển động theo quy luật s = -1/2.t^3 + 9t^2, với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu ?
Đề KSCL giữa HK1 Toán 12 năm 2018 - 2019 trường THPT Bùi Thị Xuân - TT. Huế
Đề KSCL giữa HK1 Toán 12 năm 2018 – 2019 trường THPT Bùi Thị Xuân – TT. Huế mã đề 001 gồm 2 trang với 24 câu hỏi trắc nghiệm khách quan (chiếm 8 điểm) và 1 bài toán tự luận (chiếm 2 điểm), yêu cầu học sinh hoàn thành đề thi trong thời gian 45 phút, đây là kỳ thi được tổ chức định kỳ tại các trường nhằm giúp giáo viên và nhà trường đánh giá được chất lượng học tập của mỗi học sinh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL giữa HK1 Toán 12 năm 2018 – 2019 trường THPT Bùi Thị Xuân – TT. Huế : + Gọi A, B là hai điểm cực trị của đồ thị hàm số y = f(x) = x^3 – 3x^2 + m với m là tham số thực khác 0. Tìm tất cả các giá trị thực của tham số m để trọng tâm tam giác OAB thuộc đường thẳng 3x + 3y – 8 = 0. + Cho hai hàm số f(x) = (2x + 1)/(x + 1) và g(x) = (ax + 1)/(x + 2) với a khác 1/2. Tìm tất cả các giá trị thực dương của a để các tiệm cận của hai đồ thị tạo thành một hình chữ nhật có diện tích là 4.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6