Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi thành phố lớp 9 mã NQ1

Nguồn: onluyen.vn

Đăng nhập để đọc

Đề HSG cấp huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Quỳnh Lưu Nghệ An
Nội dung Đề HSG cấp huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Quỳnh Lưu Nghệ An Bản PDF - Nội dung bài viết Đề HSG cấp huyện lớp 9 môn Toán năm 2022-2023 Phòng GD&ĐT Quỳnh Lưu Nghệ An Đề HSG cấp huyện lớp 9 môn Toán năm 2022-2023 Phòng GD&ĐT Quỳnh Lưu Nghệ An Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022-2023 của Phòng Giáo dục và Đào tạo huyện Quỳnh Lưu, tỉnh Nghệ An. Kỳ thi sẽ diễn ra vào ngày 8 tháng 12 năm 2022. Dưới đây là một số câu hỏi trong đề thi: 1. Cho các số thực dương a, b, c thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức Q. 2. Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, K lần lượt là chân đường vuông góc kẻ từ H đến AB, AC. a) Chứng minh: AD.AB = AK.AC b) Chứng minh rằng: Điểm K là điểm tiếp xúc của đường tròn ngoại tiếp tam giác KHC. 3. Cho tam giác ABC vuông cân tại A. Trên hai cạnh AB, AC lấy hai điểm M, N sao cho AM = CN. Xác định vị trí các điểm M, N trên các cạnh AB, AC sao cho đoạn MN đạt giá trị nhỏ nhất. Đây là một số câu hỏi thú vị và thách thức dành cho các em học sinh lớp 9. Chúc các em ôn tập tốt và thành công trong kỳ thi sắp tới.
Đề học sinh giỏi huyện môn Toán năm 2022 2023 phòng GD ĐT Di Linh Lâm Đồng
Nội dung Đề học sinh giỏi huyện môn Toán năm 2022 2023 phòng GD ĐT Di Linh Lâm Đồng Bản PDF - Nội dung bài viết Đề học sinh giỏi môn Toán năm 2022-2023 phòng GD&ĐT Di Linh, Lâm Đồng Đề học sinh giỏi môn Toán năm 2022-2023 phòng GD&ĐT Di Linh, Lâm Đồng Chào quý thầy cô và các em học sinh lớp 9, đề thi chọn học sinh giỏi môn Toán cấp huyện năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Di Linh, tỉnh Lâm Đồng sẽ diễn ra vào ngày 10 tháng 11 năm 2022. Một số câu hỏi thú vị trong đề thi: 1. Một con Robot được thiết kế để di chuyển theo quy tắc cố định. Nếu robot xuất phát từ vị trí A0 và đi theo quy luật cụ thể để đến vị trí A2022, hỏi khoảng cách giữa điểm xuất phát và điểm đến của con Robot là bao nhiêu? 2. Một đoàn từ thiện phát 22 quyển vở cho các học sinh có hoàn cảnh khó khăn. Nếu bớt đi một phần quà thì có thể chia đều tất cả số vở cho các phần quà mà vẫn còn thừa 1 quyển. Hỏi đoàn từ thiện ban đầu có bao nhiêu quyển vở, biết rằng mỗi phần quà không quá 30 quyển? 3. Cho tam giác vuông ABC có đường cao AH, đường trung tuyến BM và đường phân giác CK cắt nhau tại E. Chứng minh rằng chiều cao hình thang tam giác AHCK bằng nửa tổng các cạnh góc vuông AC và BC. Chúc các em học sinh sẵn sàng và tự tin để làm bài thi tốt nhất!
Đề HSG lớp 9 môn Toán vòng 2 năm 2022 2023 phòng GD ĐT Gia Lâm Hà Nội
Nội dung Đề HSG lớp 9 môn Toán vòng 2 năm 2022 2023 phòng GD ĐT Gia Lâm Hà Nội Bản PDF - Nội dung bài viết Thông Báo Đề Thi Học Sinh Giỏi Toán Lớp 9 Vòng 2 Năm 2022 - 2023 Thông Báo Đề Thi Học Sinh Giỏi Toán Lớp 9 Vòng 2 Năm 2022 - 2023 Trân trọng thông báo đến quý thầy cô và các em học sinh lớp 9 về đề thi chọn học sinh giỏi môn Toán lớp 9 vòng 2 năm học 2022 - 2023 do Phòng Giáo dục và Đào tạo huyện Gia Lâm, thành phố Hà Nội tổ chức. Kỳ thi sẽ diễn ra vào ngày 23 tháng 11 năm 2022, hẹn gặp tất cả các em tại địa điểm thi đã thông báo.
Đề HSG lớp 9 môn Toán năm 2022 2023 trường THPT chuyên Lam Sơn Thanh Hóa
Nội dung Đề HSG lớp 9 môn Toán năm 2022 2023 trường THPT chuyên Lam Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề Thi Học Sinh Giỏi Toán Lớp 9 Trường THPT Chuyên Lam Sơn Thanh Hóa Đề Thi Học Sinh Giỏi Toán Lớp 9 Trường THPT Chuyên Lam Sơn Thanh Hóa Xin chào quý thầy, cô và các em học sinh lớp 9! Hôm nay Sytu xin giới thiệu đến các bạn đề thi khảo sát chất lượng học sinh giỏi môn Toán lớp 9 năm học 2022 - 2023 của trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào Chủ Nhật ngày 27 tháng 11 năm 2022. Trích dẫn một số câu hỏi trong đề: 1. Hai số nguyên dương a, b được gọi là "cân bằng" nếu hai số này có cùng tập ước nguyên tố. Tìm tất cả các số nguyên dương n sao cho n và n + 6 là hai số "cân bằng" và n chia hết cho 4. 2. Cho đường tròn (O;R), đường kính AB cố định. Một điểm C di chuyển trên (O) (C khác A, B). Gọi I là tâm đường tròn nội tiếp tam giác ABC. Vẽ CH vuông góc với AB tại H. Hãy chứng minh một số tính chất của tam giác và đường tròn trong trường hợp này. 3. Một số câu hỏi khác liên quan đến vị trí của điểm C trên đường tròn, tìm điểm E trên AB để diện tích tam giác CEF lớn nhất, và chứng minh các mối quan hệ giữa các điểm và đường thẳng trong tam giác AHC. Hy vọng bài viết trên sẽ giúp các bạn ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các bạn học tốt và đạt kết quả cao trong kỳ thi sắp tới!

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6