Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT Quốc gia 2020 lần 1 trường Nghi Sơn - Thanh Hoá

Với mục đích cung cấp những đề thi thử THPT Quốc gia môn Toán chất lượng và bám sát, giúp học sinh ôn tập thi THPT Quốc gia môn Toán năm học 2019 – 2020, giới thiệu đến các em đề thi thử Toán THPT Quốc gia 2020 lần 1 trường Nghi Sơn – Thanh Hoá. Đề thi thử Toán THPT Quốc gia 2020 lần 1 trường Nghi Sơn – Thanh Hoá có mã đề 143, đề gồm có 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giám thị coi thi phát đề), đề thi có đáp án. Trích dẫn đề thi thử Toán THPT Quốc gia 2020 lần 1 trường Nghi Sơn – Thanh Hoá : + Một gia đình có con vào lớp một, họ muốn để dành cho con một số tiền là 250.000.000 đồng để sau này chi phí cho 4 năm học đại học của con mình. Hỏi bây giờ họ phải gửi vào ngân hàng số tiền là bao nhiêu để sau 12 năm họ sẽ được số tiền trên biết lãi suất của ngân hàng là 6,7% một năm và lãi suất này không đổi trong thời gian trên? + Cho hình chóp tam giác đều S.ABC. Chọn mệnh đề khẳng định sai: A. Hình chiếu S trên mp(ABC) là trực tâm tam giác ABC. B. Hình chóp S.ABC có cạnh đáy bằng cạnh bên. C. Hình chóp S.ABC là hình chóp có mặt đáy là tam giác đều. D. Hình chiếu S trên mp(ABC) là tâm đường tròn nội tiếp tam giác ABC. [ads] + Cho tứ diện đều ABCD có cạnh bằng 1. Gọi M, N là hai điểm thay đổi lần lượt thuộc cạnh BC, BD sao cho mặt phẳng (AMN)luôn vuông góc với mặt phẳng (BCD). Gọi V1 và V2 lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của thể tích khối tứ diện ABMN. Tính V1 + V2? + Cho mặt cầu S(O;R) và (P) cách O một khoảng bằng h (0 < h < R) . Gọi (L) là đường tròn giao tuyến của mặt cầu (S) và (P) có bán kính r. Lấy A là một điểm cố định thuộc (L). Một góc vuông xAy trong (P) quay quanh điểm A. Các cạnh Ax, Ay cắt (L) ở C và D. Đường thẳng đi qua A và vuông góc với (P) cắt mặt cầu ở B, hỏi diện tích ∆BCD lớn nhất bằng? + Gọi A là tập các số tự nhiên có 6 chữ số đôi một khác nhau được tạo ra từ các chữ số 0 , 1, 2 , 3 , 4 , 5. Từ A chọn ngẫu nhiên một số. Tính xác suất để số được chọn có chữ số 3 và 4 đứng cạnh nhau.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 trường THPT Phụ Dực - Thái Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT Quốc gia năm học 2022 – 2023 môn Toán lần 2 trường THPT Phụ Dực, tỉnh Thái Bình; đề thi có đáp án mã đề 101 102 103 104 105 106 107 108. Trích dẫn đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 trường THPT Phụ Dực – Thái Bình : + Giải bóng đá Mini cấp trường của một trường THPT, có 16 đội đăng kí tham dự trong đó có 3 đội 12A1, 12A2 và 12A3. Ban tổ chức cho bốc thăm ngẫu nhiên để chia đều 16 đội vào 4 bảng (mỗi bảng 4 đội) để đá vòng loại. Tính xác suất để 3 đội của 3 lớp 12A1, 12A2 và 12A3 nằm ở 3 bảng khác nhau. + Cho một cổ vật hình trụ có chiều cao đo được là 81cm, do bị hư hại nên khi tiến hành đo đạc lại thu được AB BC CA 50cm 70cm 80cm, với ABC thuộc đường tròn nắp trên như hình vẽ. Thể tích khối cổ vật ban đầu gần nhất với số nào sau đây? + Cho hàm số 2 3 2023 2024 fx x 3 2 7 3 10 4. Biết rằng tập hợp tất cả các giá trị thực của tham số m để hàm số 4 2 h x f x x mx 8 có số điểm cực tiểu nhiều nhất là S ab c. Giá trị của biểu thức 2 2 T a ab b abc thuộc khoảng nào sau đây?
Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GDĐT Yên Bái
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở Giáo dục và Đào tạo tỉnh Yên Bái (mã đề 001); kỳ thi được diễn ra vào ngày 11 tháng 04 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GD&ĐT Yên Bái : + Một nhóm gồm 10 học sinh trong đó có hai bạn A và B đứng ngẫu nhiên thành một hàng. Xác suất để hai bạn A và B đứng cạnh nhau là? + Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x = 1 và x = 3, biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (1 ≤ x ≤ 3) thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là 3x và 3×2 – 2. + Trong không gian Oxyz, cho điểm A(1;2;−3) và mặt phẳng (P): 2x + 2y − z + 9 = 0. Đường thẳng d đi qua A và vuông góc với mặt phẳng (Q): 3x + 4y – 4z + 5 = 0 cắt mặt phẳng (P) tại điểm B. Điểm M nằm trong mặt phẳng (P), nhìn đoạn AB dưới góc vuông và độ dài MB lớn nhất. Tính độ dài MB.
Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 liên trường THPT - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán lần 2 liên trường THPT trực thuộc sở GD&ĐT tỉnh Nghệ An; đề thi có đáp án tất cả các mã đề; kỳ thi được diễn ra vào chiều thứ Bảy ngày 15 tháng 04 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 liên trường THPT – Nghệ An : + Người ta sản xuất thùng phuy sắt có hình dạng là một hình trụ (có nắp đậy kín) bằng cách cán và gò các tấm thép có độ dày 1mm, biết chiều cao của thùng phuy là 876mm, đường kính ngoài của thùng phuy là 580mm và khối lượng riêng của thép là 7850kg/m3. Hỏi mỗi thùng phuy nặng khoảng bao nhiêu kg (tính gần đúng sau dấu phẩy đến 2 chữ số thập phân)? + Cho hàm số y = f(x) có đạo hàm là f'(x) = (x – a)(x − b) với a, b là hai hằng số và a < b, biết rằng f(b) = 0 và hàm số g(x) = |4×3 + (2 – 3f(a))x2 – 2f(a)x + m| (với m là tham số). Khi đó hàm số g[f(x)] có tối đa bao nhiêu điểm cực trị? + Trong không gian Oxyz, cho mặt phẳng (P): 2x + ay + bz + c = 0 chứa đường thẳng d là giao tuyến của hai mặt phẳng (A): x + y – z + 1 = 0, (B): x + y – 2z − 1 = 0. Biết rằng khoảng cách từ điểm M(1;2;1) đến mặt phẳng (P) bằng 3. Khi đó giá trị a + b + c bằng?
Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GDĐT Hưng Yên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở Giáo dục và Đào tạo tỉnh Hưng Yên; kỳ thi được diễn ra vào chiều thứ Sáu ngày 14 tháng 04 năm 2023; đề thi có đáp án tất cả các mã đề. Trích dẫn Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GD&ĐT : + Cho hình lăng trụ tam giác đều ABC.A’B’C’. Gọi O là trọng tâm tam giác A’B’C’, (N) là hình nón ngoại tiếp hình chóp O’.ABC. Góc giữa đường sinh của (N) và mặt đáy là 60°, khoảng cách giữa hai đường thẳng A’B và C’C bằng a3. Tính thể tích khối cầu ngoại tiếp hình lăng trụ ABC.A’B’C’. + Trong không gian với hệ toạ độ Oxyz, cho bốn điểm A(2;3;−1), B(0;4;2), C(1;2;-1), D(7;2;1). Đặt T trong đó N di chuyển trên trục Ox. Giá trị nhỏ nhất của T thuộc khoảng nào dưới đây? + Cho hai hàm số f(x) và g(x) liên tục trên R và hàm số f'(x) = ax3 + bx2 + cx + d, g'(x) = qx2 + nx + p với a, q ≠ 0 có đồ thị như hình vẽ. Biết diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y = f'(x) và y = g'(x) bằng 10 và f(2) = g(2). Tính diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x) và y = g(x).

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6