Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập trắc nghiệm phương pháp tọa độ trong không gian Oxyz - Nguyễn Khánh Nguyên

Tài liệu gồm 18 trang tổng hợp 146 câu hỏi trắc nghiệm phương pháp tọa độ trong không gian Oxyz theo các chủ đề: + Chủ đề 1. Hệ tọa độ Oxyz + Chủ đề 2. Phương trình mặt phẳng + Chủ đề 3. Phương trình đường thẳng + Chủ đề 4. Phương trình mặt cầu [ads] Trích dẫn tài liệu : + Cho bốn điểm A (1; -2; 0), B (0; -1; 1), C (2; 1; -1), D (3; 1; 4). Khẳng định nào đúng? A. Bốn điểm A, B, C, D là bốn điểm của một hình vuông B. Bốn điểm A, B, C, D là bốn điểm của một hình chữ nhật C. Bốn điểm A, B, C, D là bốn điểm của một hình thoi D. Bốn điểm A, B, C, D là bốn điểm của một tứ diện + Cho hai điểm A (4; 6; 2), B(2; 2; 0) và mặt phẳng (P): x + y + z = 0. Xét đường thẳng d thay đổi thuộc (P) và đi qua B, gọi H là hình chiếu vuông góc của A trên d. Biết rằng khi d thay đổi thì H thuộc một đường tròn cố định. Tính bán kính R của đường tròn đó. + Xét các điểm A (0; 0; 1), B (m; 0; 0), C (0; n; 0) và D (1; 1; 1) với m > 0, n > 0 và m + n = 1. Biết rằng khi m, n thay đổi, tồn tại một mặt cầu cố định tiếp xúc với mặt phẳng (ABC) và đi qua D. Tính bán kính R của mặt cầu đó?

Nguồn: toanmath.com

Đăng nhập để đọc

Bài tập trắc nghiệm tổng ôn số phức - Đoàn Trí Dũng
Tài liệu gồm 14 trang tuyển tập 150 bài tập trắc nghiệm tổng ôn số phức có đáp án chuẩn bị cho kỳ thi THPT Quốc gia môn Toán. Trích dẫn tài liệu : + Gọi z1, z2 là hai nghiệm của phương trình 2z^2 − 3z + 7 = 0. Tính giá trị của biểu thức z1 + z2 − z1.z2? + Gọi M là điểm biểu diễn của số phức z = 3 − 4i và M’ là điểm biểu diễn của số phức z’ = (1 + i)/2.z trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM’. + Giả sử A, B, C lần lượt là các điểm biểu diễn trên mặt phẳng phức của các số phức z1 = 1 + i, z2 = (1 + i)^2, z3 = a − i trong đó a ∈ Z. Để tam giác ABC vuông tại B thì giá trị của a là? + Cho các số phức a, b, c đôi một phân biệt và lần lượt có các điểm biểu diễn là A, B, C trong mặt phẳng tọa độ Oxy. Nếu (a − c)/(b − c) là một số thực thì mệnh đề nào sau đây đúng? [ads] A. A, B, C là ba đỉnh một tam giác B. A, B, C là ba điểm thẳng hàng C. A, B, C cùng nằm trên một đường tròn D. A, B, C là ba trong bốn đỉnh một hình vuông + Điểm M trong hình vẽ là điểm biểu diễn số phức z. Khi đó phần thực và phần ảo của số phức z là: A. Phần thực bằng 4 và phần ảo bằng -2 B. Phần thực bằng -2 và phần ảo bằng 4 C. Phần thực bằng -4 và phần ảo bằng 2 D. Phần thực bằng 2 và phần ảo bằng 4
Bài tập trắc nghiệm chuyên đề số phức - Lương Văn Huy
Tài liệu gồm 25 trang tóm tắt lý thuyết, công thức tính toán số phức và 142 bài tập trắc nghiệm chuyên đề số phức chọn lọc. Nội dung tài liệu: A. ĐỊNH NGHĨA VÀ CÁC PHÉP TOÁN SỐ PHỨC 1. Khái niệm số phức Là biểu thức có dạng a + bi, trong đó a, b là những số thực và số i thoả i^2 = –1 Kí hiệu là z = a + bi với a là phần thực, b là phần ảo, i là đơn vị ảo Tập hợp các số phức kí hiệu là C = {a + bi / a, b ∈ R và i^2 = –1}. Ta có R ⊂ C Số phức có phần ảo bằng 0 là một số thực: z = a + 0.i = a ∈ R ⊂ C Số phức có phần thực bằng 0 là một số ảo: z = 0.a + bi = bi. Đặc biệt i = 0 + 1.i Số 0 = 0 + 0.i vừa là số thực vừa là số ảo 2. Số phức bằng nhau Cho hai số phức z = a + bi và z’ = a’ + b’i . Ta có z = z ⇔ a = a’ và b = b’ 3. Biểu diễn hình học của số phức Mỗi số phức z = a + bi được xác định bởi cặp số thực (a; b) Trên mặt phẳng Oxy, mỗi điểm M(a; b) được biểu diễn bởi một số phức và ngược lại Mặt phẳng Oxy biểu diễn số phức được gọi là mặt phẳng phức. Gốc tọa độ O biểu diễn số 0, trục hoành Ox biểu diễn số thực, trục tung Oy biểu diễn số ảo [ads] 4. Môđun của số phức Số phức z = a + bi được biểu diễn bởi điểm M(a; b) trên mặt phẳng Oxy. Độ dài của véctơ OM được gọi là môđun của số phức z 5. Số phức liên hợp Cho số phức z = a + bi, số phức liên hợp của z là a – bi 6. Cộng, trừ số phức Số đối của số phức z = a + bi là –z = –a – bi Cho z = a + bi và z’ = a’ + b’i. Ta có z ± z’ = (a ± a’) + (b ± b’)i Phép cộng số phức có các tính chất như phép cộng số thực 7. Phép nhân số phức Cho hai số phức z = a + bi và z’ = a’ + b’i. Nhân hai số phức như nhân hai đa thức rồi thay i^2 = –1 và rút gọn, ta được: z.z’ = a.a’ – b.b’ + (a.b’ + a’.b)i Phép nhân số phức có các tính chất như phép nhân số thực 8. Phép chia số phức 9. Lũy thừa của đơn vị ảo B. CĂN BẬC HAI CỦA SỐ PHỨC VÀ PHƯƠNG TRÌNH BẬC HAI 1. Căn bậc hai của số phức Cho số phức w, mỗi số phức z = a + bi thoả z^2 = w được gọi là căn bậc hai của w Mỗi số phức đều có hai căn bậc hai đối nhau (Tổng quát: Căn bậc n của số phức luôn có n giá trị) 2. Phương trình bậc hai Phương trình bậc hai với hệ số a, b, c là số thực Phương trình bậc hai với hệ số phức C. DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC 1. Số phức dưới dạng lượng giác a. Acgumen của số phức z ≠ 0 Cho số phức z = a + bi ≠ 0 được biểu diễn bởi điểm M(a; b) trên mặt phẳng Oxy. Số đo φ = (Ox, OM) (rađian) được gọi là một acgumen của z Mọi acgumen của z sai khác nhau là k2p tức là có dạng φ + k2p (k ∈ Z) (z và nz sai khác nhau k2p với n là một số thực khác 0) b. Dạng lượng giác của số phức z = a + bi Dạng lượng giác của số phức z ≠ 0 là z = r(cosφ + isinφ) với φ là một acgumen của z c. Nhân, chia số phức dưới dạng lượng giác 2. Công thức Moa–vrơ (Moivre) và ứng dụng D. BÀI TẬP TRẮC NGHIỆM SỐ PHỨC
Tuyển tập 235 bài tập trắc nghiệm số phức có lời giải chi tiết
Tài liệu gồm 67 trang tuyển tập 235 bài tập trắc nghiệm số phức có đáp án kèm lời giải chi tiết. Các bài tập được phân thành các dạng: + Dạng 1. Số phức và các phép toán + Dạng 2. Phương trình trên tập số phức + Dạng 3. Tìm số phức thỏa mãn điều kiện cho trước + Dạng 4. Tập hợp các điểm biểu diễn số phức + Dạng 5. Biểu diễn hình học của số phức + Dạng 6. Số phức và GTLN – GTNN [ads]
Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao - Phạm Minh Tuấn
Tài liệu gồm 27 trang được biên soạn bởi tác giả Phạm Minh Tuấn hướng dẫn giải 65 bài toán số phức hay và khó, các bài toán số phức liên quan đến min – max, bất đẳng thức … đây là các bài toán thường xuất hiện trong các đề thi thử THPT Quốc gia môn Toán nhằm phân loại điểm 9 – 10. Trích dẫn tài liệu : + Gọi S là tập hợp các số phức z thỏa mãn |z – i| ≥ 3 và |z – 2 – 2i| ≤ 5. Kí hiệu z1, z2 là hai số phức thuộc S và là những số phức có môđun lần lượt nhỏ nhất và lớn nhất. Tính giá trị của biểu thức P = |z2 + 2.z1|. + Cho số phức w và hai số thực a, b. Biết rằng w + i và 2w – 1 là hai nghiệm của phương trình z^2 + az + b = 0. Tính a + b. + Cho số phức z thỏa mãn |z| = 1. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = |z + 1| + |z^2 – z + 1|. Tính giá trị của M.n. [ads]

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6