Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Thái Bình Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Thái Bình Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Thái Bình Chào đón quý thầy cô thân mến và các em học sinh lớp 9! Đây là đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Thái Bình. Đề thi bao gồm các câu hỏi sau: Cho hệ phương trình với m là tham số. Hãy giải hệ phương trình với m = 1 và chứng minh rằng với mọi giá trị của m, hệ phương trình luôn có nghiệm duy nhất (x;y). Tìm giá trị lớn nhất của biểu thức S = x + y. Trong mặt phẳng toạ độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = x + 2. Tìm toạ độ hai giao điểm A và B của (d) với (P). Gọi (c) là đường thẳng đi qua điểm C(-1;4) và song song với đường thẳng (d). Viết phương trình đường thẳng (c). Từ điểm M nằm ngoài đường tròn (O;R), kẻ tiếp tuyến MA (A là tiếp điểm) và cát tuyến MBC không đi qua tâm O (điểm B nằm giữa hai điểm M và C). Gọi H là trung điểm BC. Đường thẳng OH cắt đường tròn (O;R) tại hai điểm N và K (trong đó điểm K thuộc cung BAC). Gọi D là giao điểm của AN và BC. Chứng minh rằng tứ giác AKHD là tứ giác nội tiếp, NAB = NBD và NB2 = NA.ND, khi đường tròn (O;R) và điểm M cố định đồng thời cát tuyến MBC thay đổi thì điểm D nằm trên một đường tròn cố định. Chúc quý thầy cô và các em học sinh ôn tập hiệu quả và thành công trong kỳ thi sắp tới!
Nguồn: sytu.vn