Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng nguyên hàm và phương pháp tìm nguyên hàm

Tài liệu gồm 53 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề nguyên hàm và phương pháp tìm nguyên hàm, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng. Mục tiêu : Kiến thức : + Nắm được định nghĩa nguyên hàm; các tính chất của nguyên hàm và bảng nguyên hàm cơ bản. + Nắm vững các phương pháp tính nguyên hàm. Kĩ năng : + Hiểu rõ định nghĩa và tính chất của nguyên hàm để vận dụng vào việc tìm nguyên hàm. + Sử dụng thành thạo bảng nguyên hàm và các phương pháp tìm nguyên hàm. + Vận dụng nguyên hàm vào các bài toán thực tế. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tìm nguyên hàm bằng định nghĩa. – Bài toán 1. Nguyên hàm của các hàm số sơ cấp và hàm số mũ. – Bài toán 2. Nguyên hàm của hàm số lượng giác. – Bài toán 3. Các bài toán thực tế ứng dụng nguyên hàm. Dạng 2 : Tìm nguyên hàm bằng phương pháp đổi biến. – Bài toán 1. Phương pháp đổi biến dạng 1. – Bài toán 2. Tìm nguyên hàm bằng cách đổi biến dạng 2. Dạng 3 : Tìm nguyên hàm bằng phương pháp nguyên hàm từng phần.

Nguồn: toanmath.com

Đăng nhập để đọc

Nguyên hàm - tích phân và ứng dụng - Dương Phước Sang
giới thiệu đến thầy, cô và các em tài liệu nguyên hàm – tích phân và ứng dụng, tài liệu gồm 58 trang được biên soạn bởi thầy Dương Phước Sang tổng hợp lý thuyết và tuyển chọn một số bài tập trắc nghiệm – tự luận chủ đề nguyên hàm – tích phân và ứng dụng giúp học sinh học tập chương trình Giải tích 12 chương 3 và xa hơn là ôn tập chuẩn bị cho kỳ thi Trung học Phổ thông Quốc gia môn Toán. I. TÓM TẮT LÝ THUYẾT 1. Công thức định nghĩa của nguyên hàm, tích phân. 2. Tích chất của nguyên hàm. 3. Tích chất của tích phân. 4. Bảng nguyên hàm của các hàm số thông dụng. 5. Công thức nguyên hàm từng phần, tích phân từng phần. 6. Phương pháp đổi biến số trong bài toán nguyên hàm, tích phân. 7. Phép lượng giác hoá trong phương pháp tính tích phân (đổi biến số loại 1). 8. Một số dạng tích phân đặc biệt (hàm chẵn, hàm lẻ, hàm tuần hoàn …). 9. Ứng dụng tích phân giải bài toán về tốc độ thay đổi của một đại lượng. + Bài toán chuyển động. + Bài toán sinh học. [ads] 10. Ứng dụng tích phân tính diện tích hình phẳng. + Một số lưu ý về cách xử lý dấu giá trị tuyệt đối trong dấu tích phân khi tính diện tích hình phẳng. 11. Ứng dụng tích phân tính thể tích của một vật thể. + Công thức tính thể tích của một vật thể dựa vào diện tích mặt cắt. + Các công thức tính thể tích của vật thể tròn xoay (khi quay hình (H) quanh Ox). II. CÁC VÍ DỤ GIẢI TOÁN ĐIỂN HÌNH III. BÀI TẬP + Một số câu hỏi điền khuyết. + Luyện tập về nguyên hàm. + Câu hỏi trắc nghiệm khách quan nguyên hàm. + Luyện tập về tích phân. + Câu hỏi trắc nghiệm khách quan tích phân. + Luyện tập về ứng dụng của tích phân. + Câu hỏi trắc nghiệm khách quan ứng dụng của tích phân. + Trích dẫn câu trắc nghiệm trong các đề thi THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo.
Chuyên đề nguyên hàm, tích phân và ứng dụng - Đặng Việt Đông
giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu chuyên đề nguyên hàm, tích phân và ứng dụng (phiên bản đặc biệt) do thầy Đặng Việt Đông tổng hợp và biên soạn, tài liệu gồm 654 trang trình bày lý thuyết, phân dạng toán và chọn lọc các bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có lời giải chi tiết, hỗ trợ đắc lực cho các em trong quá trình học tập nội dung chương 3 Giải tích 12. Các chủ đề trong tài liệu gồm : 1.1. Nguyên hàm – định nghĩa, tính chất và nguyên hàm cơ bản (phần 1). 1.2. Nguyên hàm – định nghĩa, tính chất và nguyên hàm cơ bản (phần 2). 2. Nguyên hàm đổi biến số. 3. Nguyên hàm từng phần. 4. Tích phân – định nghĩa, tính chất và tích phân cơ bản. 5. Tích phân đổi biến số. 6. Tích phân từng phần. 7. Giá trị lớn nhất (GTLN), giá trị nhỏ nhất (GTNN) – bất đẳng thức tích phân. 8.1. Tích phân hàm ẩn áp dụng tính chất. 8.2. Tích phân hàm ẩn áp dụng đổi biến. 8.3. Tích phân hàm ẩn áp dụng từng phần. 9.1. Ứng dụng tính diện tích giới hạn bởi các đường. 9.2. Ứng dụng tính diện tích có đồ thị đạo hàm và ứng dụng thực tế. 10.1. Ứng dụng tính thể tích giới hạn bởi các đường. 10.2. Ứng dụng thực tế thể tích bởi các đường và ứng dụng thực tế. 11. Ứng dụng thực tế và liên môn [ads] Chuyên đề nguyên hàm, tích phân và ứng dụng – Đặng Việt Đông (phiên bản đặc biệt) có gì mới? + Tất cả các bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng đều có đáp án lời giải chi tiết. + Cập nhật, bổ sung thêm nhiều dạng toán mới về nguyên hàm, tích phân và ứng dụng như: các bài toán thực tế sử dụng kiến thức liên quan, các bài toán min – max – bất đẳng thức tích phân. + Kiến thức và bài tập được sắp xếp theo thứ tự từ cơ bản đến nâng cao tạo sự thuận tiện trong tra cứu và tự học tại nhà theo lộ trình. + Các bài tập được phân loại theo 4 mức độ nhận thức: nhận biết, thông hiểu, vận dụng và vận dụng bậc cao, giúp phù hợp với tất cả các đối tượng học sinh. + Đề bài và lời giải chi tiết được tách riêng thuận tiện với giáo viên khi giao bài tập cho học sinh.
Chuyên đề nguyên hàm, tích phân và ứng dụng - Lư Sĩ Pháp
Tài liệu gồm 160 trang được biên soạn bởi thầy Lư Sĩ Pháp hướng dẫn giải các dạng toán nguyên hàm, tích phân và ứng dụng trong chương trình Giải tích 12 chương 3. Nội dung của cuốn tài liệu bám sát chương trình chuẩn và chương trình nâng cao về môn Toán đã được Bộ Giáo dục và Đào tạo quy định. BÀI 1 . NGUYÊN HÀM Dạng 1. Tìm nguyên hàm bằng cách sử dụng bảng các nguyên hàm. Dạng 2. Tìm nguyên hàm bằng phương pháp đổi biến số. Dạng 3. Tìm nguyên hàm bằng phương pháp tính nguyên hàm từng phần. Dạng 4. Tìm nguyên hàm thỏa mãn điều kiện cho trước. Dạng 5. Tìm nguyên hàm của các hàm số thường gặp: hàm hữu tỉ, hàm vô tỉ, hàm lượng giác. BÀI 2 . TÍCH PHÂN Dạng 1. Tính tích phân bằng định nghĩa. Dạng 2. Tính tích phân bẳng phương pháp đổi biến (Loại 1). Dạng 3. Tính tích phân bẳng phương pháp đổi biến (Loại 2). Dạng 4. Tính tích phân bằng phương pháp từng phần. Dạng 5. Kết hợp giữa phương pháp đổi biến loại 1 và tích phân từng phần. BÀI 3 . ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC Dạng 1. Tính diện tích hình phẳng. Dạng 2. Thể tích vật thể. Dạng 3. Thể tích khối tròn xoay.
Các bài toán nguyên hàm và tích phân vận dụng, vận dụng cao - Nguyễn Minh Tuấn
Các bài toán nguyên hàm và tích phân vận dụng, vận dụng cao luôn là các câu hỏi thuộc nhóm phân loại học sinh giỏi, xuất sắc và chiếm một tỉ lệ điểm số tương đối trong đề thi THPT Quốc gia môn Toán. Nhằm giúp các em học sinh có thể nắm vững dạng toán này, tác giả Nguyễn Minh Tuấn đã biên soạn chuyên đề hướng dẫn phương pháp giải các bài toán nguyên hàm – tích phân khó. Nội dung của chuyên đề : 1. Tích phân truy hồi 2. Nguyên hàm – tích phân hàm phân thức hữu tỷ Nguyên hàm phân thức hữu tỷ là một bài toán khá cơ bản, nhưng cũng được phát triển ra rất nhiều bài toán khó. 3. Nguyên hàm – tích phân hàm lượng giác Để làm tốt được các bài toán nguyên hàm – tích phân hàm lượng giác ta cần nắm chắc được các biến đổi hạ bậc lượng giác, tích thành tổng, theo góc phụ …. 4. Đưa biểu thức vào trong dấu vi phân Ở nội dung bài viết này ta sẽ nhắc tới một số bài toán sử dụng kỹ thuật đưa một biểu thức vào trong dấu vi phân, để làm được những bài toán này cần chú ý đến kỹ năng biến đổi, đạo hàm. 5. Tích phân liên kết Có rất nhiều bài toán tích phân ta không thể sử dụng cách tính trực tiếp được hoặc tính trực tiếp tương đối khó với những bài toán như vậy ta thường sử dụng tới một kỹ thuật đó là tích phân liên kết. Chủ yếu các bài toán sử dụng phương pháp này là các tích phân lượng giác hoặc có thể là hàm phân thức. 6. Kỹ thuật lượng giác hóa Khi tính tích phân ta sẽ gặp một số bài toán dưới dấu căn thức chứa một số hàm có dạng đặc biệt mà khó tính như bình thường được, khi đó ta sẽ nghĩ tới phương pháp lượng giác hóa. 7. Nguyên hàm – tích phân từng phần Kỹ thuật từng phần là một kỹ thuât khá cơ bản nhưng rất hiệu quả trong các bài toán tính tích phân, ở trong phần này ta sẽ không nhắc lại các bài toán cơ bản nữa mà chỉ đề cập tới một số bài toán nâng cao trong phần này. 8. Đánh giá hàm số để tính tích phân Trong các bài toán tính tích phân ta sẽ gặp phải một số trường hợp tính tích phân hàm cho bởi 2 công thức phải sử dụng đến đánh giá để so sánh 2 biểu thức từ đó chia tích phân cần tính ra thành 2 phần. 9. Kỹ thuật thế biến – lấy tích phân 2 vế Kỹ thuật thế biến – lấy tích phân 2 vế được áp dụng cho những bài toán mà giả thiết có dạng tổng của hai hàm số, khi đó ta sẽ lợi dụng mối liên hệ giữa các hàm theo biến số x để thay thế những biểu thức khác sao cho 2 hàm số đó đổi chỗ cho nhau. 10. Tích phân hàm cho bởi 2 công thức Ta hiểu nôm na tích phân hàm phân nhánh tức là các phép tính tích phân những hàm cho bởi hai công thức, đây là một vấn đề dễ không có gì khó khăn cả nếu đã từng gặp và biết phương pháp làm. 11. Tích phân hàm ẩn Những bài toán tích phân trong phần này không khó, tất cả được che giấu dưới một lớp các ẩn số, việc làm của chúng ta là phát hiện ra được cách đặt ẩn để đưa tất cả về dạng chuẩn thì bài toán sẽ được giải quyết hoàn toàn. 12. Tích phân đổi cận – đổi biến Các bài toán tích phân đổi biến đổi cận là các bài toán tương đối hay, xuất hiện thường xuyên trong các đề thi thử và đề thi THPT quốc gia. 13. Tích phân có cận thay đổi Nếu như bình thường ta hay xét với những bài tích phân có cận là các hằng số cố định thì trong phần này ta sẽ cùng tìm hiểu các bài toán có cận là các hàm theo biến x. 14. Bài toán liên quan tới f’(x) và f(x) Trong phần này ta sẽ cùng nhau tìm hiểu về một lớp bài toán liên quan tới quan hệ của hai hàm f’(x) và f(x), đây là một dạng đã xuất hiện trong đề thi THPT quốc gia 2018 của bộ GD – ĐT và trong rất nhiều đề thi thử của các trường chuyên. 15. Bất đẳng thức tích phân Các bài toán bất đẳng thức tích phân được giới thiệu trong phần này nhất là phần sử dụng bất đẳng thức Cauchy – Schwarz đa phần chỉ mang tính tính tham khảo, không nên quá đi sâu do đây là chương trình liên quan tới toán cao cấp của bậc đại học. 1. Phân tích bình phương 2. Cân bằng hệ số và bất đẳng thức AM – GM Trong phần này ta sẽ tiếp cận một số bài toán khó hơn phải sử dụng đến bất đẳng thức AM – GM và các kỹ thuật cân bằng hệ số trong bất đẳng thức. 3. Bất đẳng thức Cauchy – Schwarz cho tích phân Nhìn chung thì các bài toán này chưa gặp thì sẽ thấy nó lạ và rất khó, tuy nhiên nếu đã gặp và làm quen rồi thì bài toán này trở nên tương đối dễ.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6