Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hình học không gian Toán 12 - Lê Quang Xe

Tài liệu gồm 411 trang, được biên soạn bởi thầy giáo Lê Quang Xe, tóm tắt lý thuyết, ví dụ minh họa và bài tập rèn luyện chuyên đề hình học không gian trong chương trình môn Toán 12. CHƯƠNG 1 . ĐA DIỆN 1. §1 – THỂ TÍCH KHỐI ĐA DIỆN 1. A Tóm tắt lý thuyết 1. B Ví dụ minh họa 4. C Bài tập rèn luyện 12. + Dạng 1.Mở đầu khối đa diện 12. + Dạng 2.Thể tích khối lăng trụ đứng 22. + Dạng 3.Thể tích khối chóp có cạnh bên vuông góc với đáy 55. + Dạng 4.Thể tích khối chóp có mặt bên vuông góc với đáy 89. + Dạng 5.Thể tích khối chóp đều 121. + Dạng 6.Thể tích khối tứ diện đặc biệt 151. + Dạng 7.Tỉ số thể tích 197. + Dạng 8.Các bài toán thể tích chọn lọc 244. + Dạng 9.Bài toán góc – khoảng cách 284. + Dạng 10.Cực trị khối đa diện 325. CHƯƠNG 2 . KHỐI TRÒN XOAY 344. §1 – MẶT NÓN, MẶT TRỤ & MẶT CẦU 344. A Tóm tắt lý thuyết 344. B Ví dụ 346. C Bài tập rèn luyện 348. + Dạng 1.Các yếu tố liên quan đến khối nón, Khối trụ 348. + Dạng 2.Khối tròn xoay nội, ngoại tiếp đa diện 370. + Dạng 3.Cực trị và toán thực tế về khối tròn xoay 381.

Nguồn: toanmath.com

Đăng nhập để đọc

Tuyển chọn 500 câu trắc nghiệm hình học không gian - Cao Đình Tới
Tài liệu gồm 77 trang tuyển chọn 500 bài tập trắc nghiệm hình học không gian. Mục lục tài liệu: + KIẾN THỨC Công thức tính thể tích các hình Các kiến thức về tam giác Các kiến thức về tứ giác Công thức tính diện tích các hình Hệ thức lượng trong tam giác vuông Hình chóp tứ giác S.ABCD có đáy ABCD là hình chữ nhật, cạnh bên SA vuông góc với đáy Hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với đáy Hình chóp tứ giác đều S.ABCD Hình chóp tam giác đều S.ABCD Hình chóp tam giác đều S.ABCD Hình chóp có mặt bên vuông góc với đáy Hình chóp có 2 mặt phẳng cùng vuông góc với đáy Xác định tâm và tính bán kính mặt cầu ngoại tiếp hình chóp Các loại khối đa diện đều Một số công thức giải nhanh phần thể tích khối chóp [ads] + CÁC DẠNG BÀI TẬP Hình chóp cho trước đường cao Hình chóp có mặt bên vuông góc với đáy Hình chóp đều Tỉ lệ thể tích Hình chóp nâng cao Khối đa diện Hình nón Hình trụ Mặt cầu Lăng trụ + ĐÁP SỐ
50 câu trắc nghiệm mặt cầu, mặt trụ, mặt nón - Trần Công Diêu
Tài liệu gồm 29 trang tuyển tập 50 bài toán trắc nghiệm chuyên đề mặt cầu, mặt trụ, mặt nón do thầy Trần Công Diêu biên soạn, các bài toán đều có đáp án và được giải chi tiết. Trích dẫn tài liệu : + Cho hình lập phương ABCD.A’B’C’D’. Gọi O’, O là tâm của 2 hình vuông A’B’C’D’ và ABCD và O’O = a. Gọi V1 là thể tích của hình trụ tròn xoay đáy là 2 đường tròn ngoại tiếp các hình vuông ABCD, A’B’C’D’ và V2 là thể tích hình nón tròn xoay đỉnh O’ và đáy là đường tròn nội tiếp hình vuông ABCD. Tỉ số thể tích V1/V2 là? [ads] + Cho ∆ABC vuông cân tại C, nội tiếp trong đường tròn tâm O, đường kính AB. Xét điểm S nằm ngoài mặt phẳng (ABC) sao cho SA, SB, SC tạo với (ABC) góc 45 độ. Hãy chọn câu đúng: A. Hình nón đỉnh S, đáy là đường tròn ngoại tiếp ∆ABC là hình nón tròn xoay B. Thiết diện qua trục của hình nón là tam giác vuông cân C. Khoảng cách từ O đến 2 thiết diện qua đỉnh ( SAC ) và ( SBC ) bằng nhau D. Cả 3 câu trên đều đúng + Cho hình nón tròn xoay có thiết diện qua đỉnh là 1 tam giác vuông cân. Hãy chọn câu sai trong các câu sau: A. Đường cao bằng tích bán kính đáy B. Đường sinh hợp với đáy góc 450 C. Đường sinh hợp với trục góc 450 D. Hai đường sinh tuỳ ý thì vuông góc với nhau
88 câu trắc nghiệm thể tích khối đa diện và mặt tròn xoay - Nguyễn Tất Thu
Tài liệu gồm 13 trang tuyển chọn 88 câu trắc nghiệm thể tích khối đa diện và mặt tròn xoay, tài liệu do thầy Nguyễn Tất Thu biên soạn. Trích dẫn tài liệu : + Trong các mệnh đề sau, mệnh đề nào sai? A. Hai khối chóp có diện tích đáy và chiều cao tương ứng bằng nhau thì bằng nhau B. Hai khối hộp chữ nhật có cùng diện tích toàn phần bằng nhau thì có thể tích bằng nhau C. Hai khối lăng trụ có diện tích đáy và chiều cao tương ứng bằng nhau có thể tích bằng nhau D. Hai khối hộp lập phương có cùng diện tích toàn phần bằng nhau thì có thể tích bằng nhau [ads] + Cho ba điểm A, B, C cùng thuộc một mặt cầu và cho biết góc ACB = 90 độ. Ta đưa ra các khẳng định sau: 1: Đường tròn đi qua ba điểm A,B,C nằm trên mặt cầu 2: AB là một đường kính của mặt cầu đã cho 3: AB không là đường kính của mặt cầu đã cho 4: AB là đường kính của đường tròn giao tuyến tạo bởi mặt cầu và mặt phẳng (ABC) Trong các khẳng đỉnh trên, những khẳng định nào đúng? A. 1, 2   B. 2, 4 C. 1, 4   D. 2, 3 + Trong các mệnh đề sau, mệnh đề nào sai? A. Mặt trụ và mặt nón chứa các đường thẳng B. Có vô số mặt phẳng cắt mặt cầu theo những đường tròn bằng nhau C. Luôn có hai đường tròn có bán kính khác nhau cũng nằm trên một mặt nón D. Mọi hình chóp luôn nội tiếp trong mặt cầu.
65 câu trắc nghiệm chuyên đề mặt tròn xoay - Lê Bá Bảo
Tài liệu gồm 10 trang tuyển tập 65 bài toán trắc nghiệm chuyên đề mặt tròn xoay do thầy Lê Bá Bảo biên soạn. Trích dẫn tài liệu : + Một hình trụ tròn xoay có bán kính đáy R = 1. Trên hai đường tròn đáy, (O) và (O’), tương ứng lấy 2 điểm A, B sao cho AB = 2, góc giữa AB và trục OO’ bằng 30 độ. Xét hai khẳng định sau: (I) Khoảng cách giữa OO’ và AB bằng √3/2 (II) Thể tích khối trụ là V = √3 A. Chỉ (I) đúng B. Chỉ (II) đúng C. Cả 2 câu đều sai D. Cả 2 câu đều đúng [ads] + Cho tam giác ABC vuông cân tại C, nội tiếp trong đường tròn tâm O, đường kính AB. Xét điểm S nằm ngoài mặt phẳng (ABC) sao cho SA, SB, SC tạo với mặt phẳng (ABC) một góc 45 độ. Hãy chọn khẳng định đúng trong các khẳng định sau. A. Hình tròn xoay đỉnh S, đáy là đường tròn ngoại tiếp tam giác ABC là hình nón tròn xoay B. Thiết diện qua trục của hình nón là tam giác vuông cân C. Khoảng cách từ O đến 2 thiết diện qua đỉnh S, là mặt phẳng (SAC) và (SBC) bằng nhau D. Cả ba khẳng định trên đều đúng + Câu 24. Cho điểm M nằm trong mặt cầu (S). Mệnh đề nào sau đây sai? A. Mọi mặt phẳng đi qua M đều cắt (S) theo một đường tròn B. Có một mặt phẳng đi qua M không cắt (S) C. Mọi mặt phẳng đi qua M đều cắt (S) tại hai điểm phân biệt D. Đường thẳng đi qua M và tâm O của mặt cầu cắt (S) tại hai điểm đối xứng nhau qua O

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6