Đề giao lưu HSG lớp 8 môn Toán năm 2018 2019 phòng GD ĐT Yên Lạc Vĩnh Phúc
Nội dung Đề giao lưu HSG lớp 8 môn Toán năm 2018 2019 phòng GD ĐT Yên Lạc Vĩnh Phúc Bản PDF -
Nội dung bài viết Đề thi giao lưu HSG lớp 8 môn Toán năm 2018 2019 phòng GD ĐT Yên Lạc Vĩnh Phúc Đề thi giao lưu HSG lớp 8 môn Toán năm 2018 2019 phòng GD ĐT Yên Lạc Vĩnh Phúc
Anh/chị thầy cô và các em học sinh thân mến, dưới đây là đề thi giao lưu học sinh giỏi môn Toán lớp 8 năm học 2018 – 2019 của phòng Giáo dục và Đào tạo huyện Yên Lạc, tỉnh Vĩnh Phúc.
Đề giao lưu HSG Toán lớp 8 năm 2018 – 2019 phòng GD&ĐT Yên Lạc – Vĩnh Phúc bao gồm các nội dung sau: Cho hình chữ nhật ABCD có AB > AD. Tia phân giác của góc BAD cắt BD và CD lần lượt tại E và K. Trên cạnh BD lấy điểm H sao cho AE là tia phân giác của góc CAH. Gọi F là giao điểm của HK và AB. a) Chứng minh rằng hai tam giác AHD và BHA đồng dạng. b) Giả sử AB = 12cm, AD = 9cm. Tính độ dài đoạn BF. c) Chứng minh rằng ba điểm C, E, F thẳng hàng. Ban đầu trên bảng có hai số 1 và 4. Một học sinh thực hiện thay đổi như sau: Mỗi lần chọn hai số a và b trên bảng thì viết thêm số c = ab + a + b lên trên bảng. Hỏi số nhỏ nhất không nhỏ hơn 2019 mà có thể xuất hiện được trên bảng là số nào? Cho biểu thức P. a) Rút gọn biểu thức P. b) Tìm tất cả các số nguyên x sao cho P có giá trị là số nguyên tố. c) Với x > 0 thì P không nhận những giá trị nào?
Hy vọng đề thi sẽ giúp các em học sinh rèn luyện và nâng cao kiến thức Toán của mình. Chúc các em thành công!