Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 12 cấp tỉnh năm 2022 - 2023 sở GDĐT Bình Định

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào ngày 22 tháng 10 năm 2022. Trích dẫn Đề học sinh giỏi Toán 12 cấp tỉnh năm 2022 – 2023 sở GD&ĐT Bình Định : + Cho biểu thức: (x3 − x − 2)^2022. Tính tổng S của các hệ số của x^(2k + 1) với k nguyên dương trong khai triển biểu thức trên. + Tìm tất cả các số nguyên dương có 100 chữ số thỏa mãn điều kiện tất cả các chữ số của nó đều là lẻ và hiệu của hai chữ số liên tiếp của số đó bằng 2. + Cho tam giác nhọn ABC (AB < AC) nội tiếp trong đường tròn tâm O. Trên đoạn OA lấy điểm J không trùng với A và O, đường thẳng qua J vuông góc với OA cắt các đường thẳng AB, AC, BC lần lượt tại M, N, Q. Các đường thẳng BN và CM cắt nhau tại K, đường thẳng AK cắt BC tại P. Gọi I là trung điểm BC. 1. Chứng minh tứ giác MNIP nội tiếp. 2. Gọi L là trực tâm của tam giác ABC, H là trực tâm của tam giác AMN. Chứng minh ba điểm H, K, L thẳng hàng.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề học sinh giỏi tỉnh Toán 12 năm 2023 - 2024 sở GDĐT Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nghệ An; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 150 phút. Trích dẫn Đề học sinh giỏi tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Nghệ An : + Khán đài A của một sân thi đấu thể thao có 30 hàng ghế, hàng ghế đầu tiên có 10 chỗ ngồi và mỗi hàng ghế sau có thêm 4 chỗ ngồi so với hàng ghế ngay trước nó. Hỏi khán đài A của sân thi đấu đó có bao nhiêu chỗ ngồi? + Để tạo hứng thú học tập cho học sinh trong tiết học của mình, thầy An đã viết chương trình trò chơi “Chọn số ngẫu nhiên” với luật chơi như sau: mỗi người chơi sẽ chỉ được phép chơi một lần bằng cách nhấp chuột vào nút “Bắt đầu”, chương trình sẽ chọn ngẫu nhiên một số tự nhiên có 4 chữ số khác nhau, người chơi được xác định là người thắng cuộc và sẽ nhận một phần quà nếu số được chọn nhỏ hơn 2023. Bình là học sinh được mời tham gia trò chơi trong tiết học, tính xác suất để Bình được nhận quà. + Cho lăng trụ đứng ABC.A1B1C1 có đáy ABC là tam giác vuông tại A và AB = 2a, AC = a. Góc giữa đường thẳng A1C và mặt phẳng đáy bằng a với tan a. Gọi D, E lần lượt là điểm đối xứng với B, C qua A. Lấy M, N lần lượt là trung điểm của A1D, A1E. a) Tính thể tích khối chóp A1BCMN theo a. b) Tính cosin góc giữa hai đường thẳng CM và A1B.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 - 2024 sở GDĐT Lạng Sơn
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển của tỉnh tham dự kỳ thi chọn học sinh giỏi Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Lạng Sơn. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn : + Xét các đa thức P(x) với hệ số thực thỏa mãn tính chất “Với bất kì hai số thực x,y luôn có: |y2 – P(x)| =< 2|x| khi và chỉ khi |x2 – P(y)| =< 2|y|”. Ta gọi S là tập tất cả các đa thức thỏa mãn điều kiện ở trên. a) Hãy chứng minh rằng họ đa thức P(x) với C > 0 và đa thức Q(x) = x2 + 1 cùng thuộc vào tập S. b) Giả sử rằng P(x) thuộc S và P(0) ≥ 0. Chứng minh rằng P(x) là hàm số chẵn. + Cho tam giác ABC có đường tròn nội tiếp tâm I tiếp xúc với BC, CA, AB lần lượt tại D, E, F. Giả sử G, L, K lần lượt là giao điểm của các đường thẳng EF, FD, DE với BC, CA, AB tương ứng. a) Chứng minh rằng G, L, K thẳng hàng. b) Lấy các điểm P, Q lần lượt đối xứng với D qua B, C tương ứng. Đường tròn bàng tiếp tâm J ứng với đỉnh A của tam giác ABC tiếp xúc với BC tại N; gọi R là điểm đối xứng với N qua J. Chứng minh (PQR) tiếp xúc với (I). + Một trường có 2007 nam và 2007 nữ. Mỗi học sinh tham gia không quá 100 câu lạc bộ; biết rằng bất kì hai bạn khác giới (1 nam và 1 nữ) tham gia ít nhất cùng một câu lạc bộ. Chứng minh rằng tồn tại một câu lạc bộ bao gồm ít nhất 11 nam và 11 nữ.
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 - 2024 sở GDĐT Ninh Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán THPT cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 06/10/2023 và 07/10/2023. Trích dẫn Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Ninh Bình : + Cho dãy số (xn) được xác định như sau, trong đó a là một số thực dương cho trước. a) Chứng minh rằng dãy (xn) có giới hạn hữu hạn. b) Giả sử lim xn = c. Tìm số thực a để dãy (xn) xác định bởi yn có giới hạn hữu hạn khác 0. + Cho tam giác ABC nhọn, không cần nội tiếp đường tròn (O) có các đường cao AD, BE, CF đồng quy tại H. Gọi T là giao điểm thứ hai của đường thẳng CH với đường tròn (O); I là giao điểm của AT với BC; J là giao điểm của AD với EF. Gọi M, N lần lượt là trung điểm của các đoạn HC, HE. Lấy điểm P trên EF sao cho MP song song với DE, điểm Q trên BJ sao cho EQ song song với NP. a) Chứng minh rằng ba điểm I, E, Q thẳng hàng. b) Gọi X là giao điểm của BH với CO, Y là giao điểm của CH với BO, Z là trực tâm tam giác DEF. Chứng minh rằng OZ chia đôi đoạn XY. + Cho tập hợp S = {1; 2; 3; …; 2048}. a) Chứng minh khẳng định sau: “Với mọi tập con X của tập S có số phần tử bằng 15, luôn tồn tại hai tập con khác rỗng rời nhau A, B của tập X sao cho i = j”. Khẳng định này còn đúng không khi số phần tử của tập X bằng 12? b) Tập con Y khác rỗng của S thoả mãn điều kiện: với mọi y thuộc Y thì 15y không thuộc Y. Tìm số phần tử lớn nhất có thể của tập Y.
Đề HSG Toán 12 lần 1 năm 2023 - 2024 THPT Lý Thái Tổ Gia Bình 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra học sinh giỏi môn Toán 12 lần 1 năm học 2023 – 2024 trường THPT Lý Thái Tổ và trường THPT Gia Bình số 1, tỉnh Bắc Ninh; đề thi hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án mã đề 101 102 103 104. Trích dẫn Đề HSG Toán 12 lần 1 năm 2023 – 2024 THPT Lý Thái Tổ & Gia Bình 1 – Bắc Ninh : + Đội tuyển học sinh giỏi môn Toán gồm 10 học sinh gồm 6 nam trong đó có Quang và 4 nữ trong đócó Huyền được xếp ngẫu nhiên vào 10 ghế trên một hàng ngang để dự lễ ra mắt đội tuyển học sinh giỏi. Xác suất để xếp được giữa 2 bạn nữ gần nhau có đúng 2 bạn nam, đồng thời Quang không ngồi cạnh Huyền là? + Cho tam giác ABC vuông tại A AB cm 6 AC cm 3. M là một điểm di động trên cạnh BC (M khác B C); gọi H K lần lượt là hình chiếu vuông góc của M trên AB và AC. Cho hình chữ nhật AHMK quay xung quanh cạnh AH khối trụ được tạo thành có thể tích lớn nhất là? + Cho tứ diện ABCD 1111 có thể tích 1 V 156. Tứ diện ABCD 2222 có các đỉnh là trọng tâm các mặt của tứ diện ABCD 1111 (như hình vẽ). Tứ diện ABCD nnnn 1111 có các đỉnh là trọng tâm các mặt của tứ diện ABC nnnn D (n 1 n). Gọi Vn là thể tích của tứ diện ABCD nnnn. Tính 1 2 VVV n.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6