Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Kỹ thuật giải nhanh hệ phương trình - Đặng Thành Nam

Tài liệu giới thiệu các kỹ thuật giải nhanh hệ phương trình do thầy Đặng Thành Nam biên soạn, tài liệu trình bày chi tiết và đầy đủ các dạng toán hệ phương trình đại số và vô tỷ. Các nội dung có trong tài liệu : Chương 1. Kiến thức bổ sung khi giải hệ phương trình + Chủ đề 1. Phương trình, bất phương trình bậc nhất và bậc hai + Chủ đề 2. Phương trình bậc ba + Chủ đề 3. Phương trình bậc bốn + Chủ đề 4. Phương trình phân thức hữu tỉ + Chủ đề 5. Hệ phương trình hai ẩn có chứa phương trình bậc nhất + Chủ đề 6. Hệ phương trình bậc hai hai ẩn dạng tổng quát Chương 2. Các kỹ thuật và phương pháp giải hệ phương trình + Chủ đề 1. Kỹ thuật sử dụng hệ phương trình bậc nhất hai ẩn + Chủ đề 2. Hệ phương trình đối xứng loại I + Chủ đề 3. Hệ phương trình đối xứng loại II + Chủ đề 4. Hệ phương trình có yếu tố đẳng cấp + Chủ đề 5. Kỹ thuật sử dụng phép thế + Chủ đề 6. Kỹ thuật phân tích thành nhân tử + Chủ đề 7. Kỹ thuật cộng, trừ và nhân theo vế hai phương trình của hệ + Chủ đề 8. Kỹ thuật đặt ẩn phụ dạng đại số + Chủ đề 9. Kỹ thuật đặt ẩn phụ dạng tổng hiệu + Chủ đề 10. Kỹ thuật sử dụng tính đơn điệu của hàm số [ads] + Chủ đề 11. Kỹ thuật sử dụng điều kiện có nghiệm của hệ phương trình + Chủ đề 12. Kỹ thuật đánh giá + Chủ đề 13. Hệ phương trình có chứa căn thức + Chủ đề 14. Kỹ thuật lượng giác hóa + Chủ đề 15. Kỹ thuật hệ số bất định + Chủ đề 16. Kỹ thuật phức hóa + Chủ đề 17. Kỹ thuật sử dụng tính chất hình học giải tích + Chủ đề 18. Kỹ thuật nhân liên hợp đối với hệ phương trình có chứa căn thức + Chủ đề 19. Một số bài toán hệ phương trình chọn lọc và rèn luyện nâng cao Chương 3. Bài toán hệ phương trình có chứa tham số + Chủ đề 1. Hệ phương trình đối xứng loại 1 + Chủ đề 2. Hệ phương trình đối xứng loại 2 + Chủ đề 3. Hệ đẳng cấp + Chủ đề 4. Kỹ thuật sử dụng tính đơn điệu của hàm số – Xử lý bài toán hệ phương trình có chứa tham số

Nguồn: toanmath.com

Đăng nhập để đọc

Sử dụng phân tích nhân tử giải hệ phương trình chứa căn - Lương Tuấn Đức
Tài liệu gồm 268 trang được biên soạn bởi thầy Lương Tuấn Đức trình bày một số phương pháp giải hệ phương trình chứa căn thức bằng phương pháp phân tích nhân tử, đây là dạng toán được bắt gặp nhiều trong chương trình Đại số 10 chương 3 và chương 4. Tổng quan về nội dung tài liệu: Phần 1 . Sử dụng phương pháp biến đổi tương đương giải hệ phương trình chứa căn thức: Mở màn cho lớp hệ phương trình chứa căn thức sử dụng phép thế, cộng đại số, phân tích hằng đẳng thức, phân tích nhân tử không chứa căn (không sử dụng liên hợp) và phối hợp các kỹ năng này. Tuy nhiên đây là hệ phương trình chứa căn thức nên đòi hỏi độc giả đã nắm vững các phương pháp giải hệ phương trình cơ bản, hệ phương trình hữu tỷ và các phương pháp giải phương trình chứa căn nói chung. + Sử dụng phép thế và phép cộng đại số. + Khai thác bài toán nghiệm cố định. + Sử dụng phân tích nhân tử cơ bản (dạng đa thức). + Sử dụng hằng đẳng thức. + Tổng hợp các phép giải phương trình chứa căn. + Bài toán nhiều cách giải. [ads] Phần 8 . Kết hợp sử dụng phép thế, cộng đại số và ẩn phụ (tiếp theo) giải hệ phương trình chứa căn thức: Tài liệu chủ yếu giới thiệu đến quý bạn đọc lý thuyết giải hệ phương trình chứa căn ở cấp độ cao, trình bày chi tiết các thí dụ điển hình về hệ giải được nhờ sử dụng tổng hợp các phép thế, phép cộng đại số, đại lựợng liên hợp, sử dụng đồng bộ tính chất đơn điệu hàm số có chặn miền giá trị, các phép ước lượng – đánh giá – bất đẳng thức phần tiếp theo. Đây là nội dung có mức độ khó tương đối, đòi hỏi các bạn độc giả cần có kiến thức vững chắc về các phép giải phương trình chứa căn, kỹ năng biến đổi đại số và tư duy chiều sâu bất đẳng thức. + Phối hợp phép thế, cộng đại số và ẩn phụ. + Sử dụng tính chất đơn điệu hàm số. + Sử dụng kết hợp đánh giá – bất đẳng thức. + Tổng hợp các phép giải phương trình chứa căn. + Bài toán nhiều cách giải. Kiến thức chuẩn bị khi đọc tài liệu: 1. Kỹ thuật nhân, chia đơn thức, đa thức, hằng đẳng thức, phân thức, căn thức, giá trị tuyệt đối. 2. Nắm vững các phương pháp phân tích đa thức thành nhân tử. 3. Nắm vững các phương pháp giải, biện luận phương trình bậc nhất, bậc hai, bậc cao. 4. Sử dụng thành thạo các ký hiệu toán học, logic (ký hiệu hội, tuyển, kéo theo, tương đương). 5. Kỹ năng giải hệ phương trình cơ bản và hệ phương trình đối xứng, hệ phương trình đồng bậc, hệ phương trình chứa căn thông thường. 6. Kỹ thuật đặt ẩn phụ, sử dụng đại lượng liên hợp, biến đổi tương đương. 7. Kiến thức nền tảng về uớc lượng – đánh giá, hàm số – đồ thị, bất đẳng thức – cực trị.
Sử dụng một ẩn phụ đơn giản giải phương trình chứa căn (ẩn phụ 1) - Lương Tuấn Đức
Tài liệu gồm 311 trang được biên soạn bởi thầy Lương Tuấn Đức hướng dẫn phương pháp sử dụng một ẩn phụ đơn giản giải phương trình chứa căn. Về cơ bản để làm việc với lớp phương trình, bất phương trình vô tỷ chúng ta ưu tiên khử hoặc giảm các căn thức phức tạp của bài toán, phép sử dụng ẩn phụ là một trong những phương pháp cơ bản nhằm mục đích đó, ngoài ra bài toán còn trở nên gọn gàng, sáng sủa và giúp chúng ta định hình hướng đi một cách ổn định nhất. Đôi khi đây cũng là phương pháp tối ưu cho nhiều bài toán cồng kềnh. Tổng quan về nội dung tài liệu: Phần 1 . Sử dụng một ẩn phụ đưa về phương trình hữu tỷ: Chủ đạo xoay quanh một lớp các bài toán chứa căn thức giải được bằng phép đặt ẩn phụ quy về phương trình bậc hai và phương trình phân thức hữu tỷ. Đây được coi là dạng toán cơ bản đặt nền tảng cho các bạn học sinh trong việc tư duy, thao tác các bài toán có sử dụng yếu tố ẩn phụ với mức độ phức tạp, đa chiều hơn trong các tài liệu tiếp theo. + Đặt một ẩn phụ cơ bản – phương trình bậc hai. + Đặt một ẩn phụ cơ bản – phương trình phân thức hữu tỷ. + Bài toán nhiều cách giải. [ads] Phần 4 . Sử dụng hai ẩn phụ đưa về phương trình đồng bậc – đẳng cấp: Chủ yếu xoay quanh một lớp các bài toán chứa căn thức được giải thông ý tưởng sử dụng hai ẩn phụ đưa về phương trình đồng bậc – đẳng cấp bậc hai cơ bản kết hợp phân tích nhân tử – phương trình tích. Kỹ năng này đồng hành cùng việc giải hệ phương trình hữu tỷ đồng bậc – đẳng cấp, hệ phương trình chứa căn quy về đẳng cấp, ngày một nâng cao kỹ năng giải phương trình – hệ phương trình cho các bạn học sinh. + Đặt hai ẩn phụ – phương trình đồng bậc bậc hai. + Đặt hai ẩn phụ – phân tích nhân tử. + Bài toán nhiều cách giải. Phần 9 . Sử dụng hai hay nhiều ẩn phụ quy về hệ phương trình (phần thứ 2): Phần 9 mang tính kế thừa và phát huy với phương châm chủ đạo là dùng hai ẩn phụ đưa phương trình cho trước về hệ phương trình, bao gồm hệ cơ bản, hệ đối xứng và gần đối xứng (tiếp theo), xoay quanh các bài toán với căn bậc ba. Đây vẫn là một trong những phương án hữu tỷ hóa phương trình chứa căn, giảm thiểu đại bộ phận sự cồng kềnh và sai sót trong tính toán. Kỹ năng này đồng hành cùng việc giải hệ phương trình hữu tỷ đồng bậc – đẳng cấp, hệ phương trình chứa căn quy về đẳng cấp, ngày một nâng cao kỹ năng giải phương trình – hệ phương trình cho các bạn học sinh. + Đặt ẩn phụ quy về hệ đối xứng – gần đối xứng (tiếp theo). + Bài toán nhiều cách giải. Tài liệu phù hợp với các bạn học sinh lớp 9 THCS ôn thi vào lớp 10 THPT đại trà, lớp 10 hệ THPT Chuyên, các bạn chuẩn bị bước vào các kỳ thi học sinh giỏi Toán các cấp và dự thi kỳ thi tuyển sinh Đại học – Cao đẳng môn Toán trên toàn quốc, cao hơn là tài liệu tham khảo dành cho các thầy cô giáo và các bạn trẻ yêu Toán khác.
Sử dụng biến đổi tương đương giải phương trình chứa căn đơn giản - Lương Tuấn Đức
Tài liệu gồm 360 trang được biên soạn bởi thầy Lương Tuấn Đức trình bày phương pháp sử dụng biến đổi tương đương giải phương trình chứa căn đơn giản, đây là nội dung thuộc chương trình Đại số 10 chương 3 và chương 4. Tổng quan về nội dung tài liệu: Phần 1 . Nhập môn sử dụng phép biến đổi tương đương, nâng cao lũy thừa. + Phương trình một căn thức độc lập. + Bất phương trình một căn thức độc lập. + Bài toán nhiều cách giải. Phần 4 . Sử dụng linh hoạt phép biến đổi tương đương, nâng cao lũy thừa. + Một số dạng toán đặc trưng quen thuộc. + Phân tích nhân tử, đưa về dạng tích – thương. + Bài toán nhiều cách giải. Phần 5 . Sử dụng linh hoạt phép biến đổi tương đương, nâng cao lũy thừa. + Phân tích hằng đẳng thức (phần 1). + Phân tích nhân tử – đưa về dạng tích, thương (phần 1). + Một số bài toán khác. + Bài toán nhiều cách giải. Kiến thức, kỹ năng cần chuẩn bị khi đọc tài liệu: 1. Kỹ năng nhân, chia đa thức, phân tích đa thức thành nhân tử, biến đổi phân thức đại số và căn thức. 2. Kỹ năng biến đổi tương đương, nâng lũy thừa, phân tích hằng đẳng thức, thêm bớt. 3. Nắm vững lý thuyết bất phương trình, dấu nhị thức bậc nhất, dấu tam thức bậc hai. 4. Thực hành giải phương trình, bất phương trình bậc hai, dạng đại số bậc cao, phân thức hữu tỷ. 5. Sử dụng thành thạo các ký hiệu logic trong phạm vi toán phổ thông.
Vẻ đẹp đánh giá phương trình và hệ phương trình
giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu Vẻ đẹp đánh giá phương trình và hệ phương trình được biên soạn bởi nhóm tác giả Chinh phục Olympic Toán: Nguyễn Minh Tuấn, Nguyễn Trường Phát và Nguyễn Mai Hoàng Anh, tài liệu gồm 271 trang đi sâu khai thác kỹ thuật đánh giá phương trình và hệ phương trình, đây là một phương pháp rất mạnh và hiệu quả để xử lý các bài toán phức tạp. Tài liệu tổng hợp, sáng tạo các bài toán hay và khó hơn nhằm đưa đến cho bạn đọc một cái nhìn, và hướng đi mới trong việc giải các bài toán phương trình vô tỷ. Tài liệu hướng đến 2 đối tượng là các bạn học sinh lớp 10 đang học phương trình, hệ phương trình và các bạn đang ôn thi học sinh giỏi nên sẽ có một số phần có sự trợ giúp của máy tính cầm tay để cho các bạn tham khảo. Phần 1 . Kỹ thuật đánh giá phương trình vô nghiệm. 1. Chứng minh phương trình bậc 4 vô nghiệm. 2. Chứng minh phương trình bậc 6 vô nghiệm. 3. Cách phân tích riêng cho hai dòng máy đặc biệt. 4. Chứng minh trên khoảng. 5. Phương pháp DAC chứng minh trên đoạn. 6. Các bài toán bất đẳng thức 1 biến. [ads] Phần 2 . Phương pháp hàm số đánh giá phương trình – hệ phương trình. Các kiến thức cần nhớ. 1. Các bài toán về phương trình. + Phương pháp hàm đặc trưng. + Phương pháp chứng minh hàm đơn điệu. 2. Các bài toán hệ phương trình. Phần 3 . Bất đẳng thức đánh giá phương trình – hệ phương trình. Các bất đẳng thúc cần nhớ. 1. Các bài toán về phương trình. + Đánh giá miền nghiệm. + Đánh giá theo cụm. + Kỹ thuật sử dụng bất đẳng thức cổ điển. 2. Các bài toán về hệ phương trình. Tài liệu tham khảo.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6