Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng dãy số, cấp số cộng và cấp số nhân Toán 11 Cánh Diều

Tài liệu gồm 108 trang, được biên soạn bởi thầy giáo Trần Đình Cư, bao gồm tóm tắt kiến thức cơ bản cần nắm, phân loại và phương pháp giải bài tập chuyên đề dãy số, cấp số cộng và cấp số nhân trong chương trình môn Toán 11 Cánh Diều (CD). Mục lục : BÀI 1 . DÃY SỐ 3. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 3. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 4. Dạng 1. Tìm số hạng của dãy số 4. 1. Phương pháp 4. 2. Các ví dụ 4. Dạng 2. Tính tăng giảm của dãy số 5. 1. Phương pháp 5. 2. Các ví dụ 5. Dạng 3. Dãy số bị chặn 9. 1. Phương pháp 9. 2. Các ví dụ 9. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 16. D. BÀI TẬP TRẮC NGHIỆM 19. BÀI 2 . CẤP SỐ CỘNG 35. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 35. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 35. Dạng 1. Nhận dạng 1 dãy số là cấp số cộng 35. 1. Phương pháp 35. 2. Các ví dụ rèn luyện kĩ năng 35. Dạng 2. Xác định số hạng, công sai và số hạng tổng quát của cấp số cộng 36. 1. Phương pháp 36. 2. Các ví dụ rèn luyện kĩ năng 36. Dạng 3. Tính tổng các số hạng trong một cấp số cộng 37. 1. Phương pháp 37. 2. Các ví dụ rèn luyện kĩ năng 37. Dạng 4. Giải phương trình (tìm x trong cấp số cộng) 38. 1. Phương pháp 38. 2. Các ví dụ rèn luyện kĩ năng 38. Dạng 5. Chứng minh một hệ thức trong cấp số cộng lập thành cấp số cộng, bài toán có sử dụng yếu tố cấp số cộng 39. 1. Phương pháp 39. 2. Các ví dụ rèn luyện kĩ năng 39. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 41. D. BÀI TẬP TRẮC NGHIỆM 45. BÀI 3 . CẤP SỐ NHÂN 55. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 55. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 56. Dạng 1. Chứng mình một dãy số là cấp số nhân 56. 1. Phương pháp 56. 2. Các ví dụ rèn luyện kĩ năng 56. Dạng 2. Xác định các số hạng của cấp số nhân, tổng của cấp số nhân 58. 1. Phương pháp 58. 2. Các ví dụ rèn luyện kĩ năng 58. Dạng 3. Các bài toán thực tế 70. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 72. D. BÀI TẬP TRẮC NGHIỆM 75. ÔN TẬP CHƯƠNG 2 92. PHẦN 1. GIẢI BÀI TẬP SÁCH GIÁO KHOA 92. PHẦN 2. BÀI TẬP TỔNG ÔN CHƯƠNG 2 100.

Nguồn: toanmath.com

Đăng nhập để đọc

Chuyên đề quy nạp toán học, dãy số, cấp số cộng và cấp số nhân - Nguyễn Bảo Vương
Tài liệu gồm 123 trang gồm tóm tắt lý thuyết SGK, phân dạng, hướng dẫn giải, bài tập trắc nghiệm và tự luận các chủ đề: phương pháp quy nạp toán học, dãy số, cấp số cộng và cấp số nhân trong chương trình Đại số và Giải tích 11 chương 3. Các bài tập trắc nghiệm có đáp án và bài tập tự luận được giải chi tiết, bài tập được sắp xếp theo thứ tự các mức độ nhận thức: nhận biết, thông hiểu, vận dụng dụng thấp và vận dụng cao. Tài liệu được biên soạn bởi thầy Nguyễn Bảo Vương. 1. PHƯƠNG PHÁP QUY NẠP TOÁN HỌC Vấn đề 1 . Dùng quy nạp để chứng minh đẳng thức. Bất đẳng thức Phương pháp: Giả sử cần chứng minh đẳng thức P(n) = Q(n) (hoặc P(n) > Q(n)) đúng với mọi n ≥ n0 (n0 ∈ N), ta thực hiện các bước sau: + Bước 1: Tính P(n0), Q(n0) rồi chứng minh P(n0) = Q(n0). + Bước 2: Giả sử P(k) = Q(k), k ∈ N, k ≥ n0, ta cần chứng minh P(k + 1) = Q(k + 1) Vấn đề 2 . Ứng dụng phương pháp quy nạp trong số học và trong hình học 2. DÃY SỐ Vấn đề 1 . Xác định số hạng của dãy số Vấn đề 2 . Dãy số đơn điệu – Dãy số bị chặn Phương pháp: Để xét tính đơn điệu của dãy số (un) ta xét: kn = un+1 – un + Nếu kn > 0 ∀n ∈ N* ⇒ dãy (un) tăng. + Nếu kn < 0 ∀n ∈ N* ⇒ dãy (un) giảm. Khi un > 0 ∀n ∈ N*, ta có thể xét: tn = un+1/un + Nếu tn > 1 ∀n ∈ N* ⇒ dãy (un) tăng. + Nếu tn < 1 ∀n ∈ N* ⇒ dãy (un) giảm. Để xét tính bị chặn của dãy số ta có thể dự đoán rồi chứng minh bằng quy nạp. [ads] 3. CẤP SỐ CỘNG – CẤP SỐ NHÂN Vấn đề 1 . Xác định cấp số và xác yếu tố của cấp số Dãy số (un) là một cấp số cộng ⇔ un+1 – un = d không phụ thuộc vào n và d là công sai. Dãy số (un) là một cấp số nhân ⇔ un+1/un = q không phụ thuộc vào n và q là công bội. Ba số a, b, c theo thứ tự đó lập thành cấp số cộng ⇔ a + c = 2b. Ba số a, b, c theo thứ tự đó lập thành cấp số nhân ⇔ a.c = b^2. Để xác định một cấp số cộng, ta cần xác định số hạng đầu và công sai. Do đó, ta thường biểu diễn giả thiết của bài toán qua u1 và d. Để xác định một cấp số nhân, ta cần xác định số hạng đầu và công bội. Do đó, ta thường biểu diễn giả thiết của bài toán qua u1 và q. Vấn đề 2 . Chứng minh tính chất của cấp số Phương pháp: Sử dụng công thức tổng quát của cấp số, chuyển các đại lượng qua số hạng đầu và công sai, công bội. Sử dụng tính chất của cấp số. Vấn đề 3 . Tìm điều kiện để dãy số lập thành cấp số
Các dạng toán phương pháp quy nạp toán học, dãy số, cấp số cộng và cấp số nhân - Trần Quốc Nghĩa
Tài liệu gồm 64 trang phân dạng, hướng dẫn phương pháp giải và tuyển chọn các bài tập trắc nghiệm, tự luận chuyên đề phương pháp quy nạp toán học, dãy số, cấp số cộng và cấp số nhân thuộc chương 3 Đại số và Giải tích 11, tài liệu do thầy Trần Quốc Nghĩa biên soạn, các bài tập trắc nghiệm có đáp án. Nội dung tài liệu : Vấn đề 1. PHƯƠNG PHÁP QUY NẠP TOÁN HỌC + Dạng 1. Chứng minh đẳng thức bằng phương pháp quy nạp + Dạng 2. Chứng minh các bài toán chia hết bằng phương pháp quy nạp + Dạng 3. [Nâng cao] Chứng minh các bài toán bất đẳng thức bằng phương pháp quy nạp Vấn đề 2. DÃY SỐ + Dạng 1. Mở đầu về dãy số + Dạng 2. Xác định công thức của dãy số (un ) + Dạng 3. Sử dụng phương pháp quy nạp chứng minh dãy số thỏa mãn tính chất K + Dạng 4. Xét tính tăng, giảm (hay tính đơn điệu) và bị chặn của một dãy số BÀI TẬP TỔNG HỢP CHỦ ĐỀ 2 BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 2 [ads] Vấn đề 3. CẤP SỐ CỘNG + Dạng 1. Chứng minh ba số (dãy số) lập thành một cấp số cộng + Dạng 2. Xác định số hạng tổng quát của một cấp số cộng + Dạng 3. Tìm các phần tử của một cấp số cộng + Dạng 4. Ứng dụng các tính chất của một cấp số cộng + Dạng 5. Tính tổng BÀI TẬP TỔNG HỢP CHỦ ĐỀ 3 BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 3 Vấn đề 4. CẤP SỐ NHÂN + Dạng 1. Tìm các phần tử của một cấp số nhân + Dạng 2. Xác định số hạng tổng quát của một cấp số nhân + Dạng 3. Ứng dụng các tính chất của một cấp số nhân + Dạng 4. Chứng minh ba số (dãy số) lập thành một cấp số nhân + Dạng 5. Tính tổng BÀI TẬP TỔNG HỢP CHỦ ĐỀ 4 BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 4
Đi tìm công thức tổng quát của dãy số - Trần Duy Sơn
Việc biết được công thức tổng quát của một dãy số là một đòi hỏi quan trọng trong việc giải các bài toán về dãy số, từ công thức tổng quát chúng ta có thể có “cái nhìn tường minh” về dãy số đó, tính nhanh được các số hạng trong dãy cũng như thấy được các tính chất của dãy số để vận dụng vào các bài toán khác … Tài liệu gồm 21 trang hướng dẫn tìm công thức tổng quát của dãy số thông qua phân tích cách giải một số bài toán tổng quát thường gặp, để từ đó có thể vận dụng vào các trường hợp cụ thể. Nội dung tài liệu : + Đi tìm công thức tổng quát dãy số + Phương trình sai phân tuyến tính + Sử dụng phép thế lượng giác để xác định CTTQ dãy số + Các bài toán dãy số chọn lọc + Bài tập đề nghị + Tài liệu tham khảo [ads] Bạn đọc có thể xem thêm một số tài liệu hướng dẫn tìm công thức tổng quát của dãy số khác bên dưới: + Cách tìm công thức tổng quát của dãy số cho bởi công thức truy hồi – Phạm Thị Thu Huyền + Phương pháp xác định công thức tổng quát của dãy số – Nguyễn Tất Thu + Tìm số hạng tổng quát của dãy số bằng phương pháp sai phân – Mai Xuân Việt
Cách tìm công thức tổng quát của dãy số cho bởi công thức truy hồi - Phạm Thị Thu Huyền
Tài liệu gồm 23 trang hướng dẫn phương pháp tìm công thức tổng quát của dãy số cho bởi công thức truy hồi thông qua một số ví dụ minh họa, tài liệu được biên soạn bởi cô Phạm Thị Thu Huyền với nội dung gồm: Dạng 1: Tìm số hạng tổng quát của dãy số (dạng đa thức) khi biết các số hạng đầu tiên Dạng 2: Dạng cơ sở: Cho dãy (un) biết u1 = a và un+1 = q.un + d ∀ n ≥ 1 với q, d là các hằng số thực Gồm 4 trường hợp, dạng này được gọi là dạng cơ sở vì: + Với 3 trường hợp 1, 2, và 3 dãy số trở thành các dãy đặc biệt đó là: dãy số hằng, cấp số cộng và cấp số nhân. Các dãy số này ta đều đã tìm được công thức của số hạng tổng quát. [ads] + Trên cơ sở của 3 dãy này, để giải trường hợp 4: bằng phương pháp đặt một dãy số mới (vn) liên hệ với dãy số (un) bằng một biểu thức nào đó để có thể đưa được về dãy số (vn) mà (vn) dãy số hằng hoặc cấp cộng hoặc cấp số nhân. + Vấn đề đặt ra là: Mối liên hệ giữa (un) và (vn) bởi biểu thức nào mới có thể đưa dãy số (vn) thành dãy số hằng hoặc cấp số cộng hoặc cấp số nhân hoặc trường hợp 4. Sử dụng máy tính Casio để tìm các số hạng trong một dãy số được cho bởi công thức truy hồi Theo dự án mới của Bộ Giáo Dục và Đào Tạo, từ năm học 2016 – 2017 kỳ thi THPT Quốc gia, bộ môn Toán thi bằng phương pháp trắc nghiệm. Vậy, với một bài toán về dãy số mà dãy số đó cho bởi công thức truy hồi thì phải giải thế nào? Có phải tìm công thức của số hạng tổng quát hay không? Bài viết giới thiệu quy trình bấm máy tính Casio để tìm giá trị uk của một dãy số cho bởi biểu thức truy hồi.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6