Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh chuyên môn Toán năm 2023 2024 sở GD ĐT Lào Cai

Nội dung Đề tuyển sinh chuyên môn Toán năm 2023 2024 sở GD ĐT Lào Cai Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán năm 2023-2024 Sở GD&ĐT Lào Cai Đề tuyển sinh chuyên môn Toán năm 2023-2024 Sở GD&ĐT Lào Cai Sytu xin được giới thiệu đến quý thầy cô và các em học sinh đề chính thức của kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2023-2024 sở Giáo dục và Đào tạo tỉnh Lào Cai. Kỳ thi sẽ diễn ra vào Chủ Nhật ngày 04 tháng 06 năm 2023. Dưới đây là một số câu hỏi trong đề tuyển sinh: Gieo một con súc sắc cân đối và đồng chất hai lần liên tiếp. Tính xác suất sao cho tổng số chấm trên mặt xuất hiện của con súc sắc trong hai lần gieo không lớn hơn 6. Lúc 7 giờ 30 phút hai xe ô tô cùng xuất phát từ A đến B với vận tốc không đổi. Xe thứ hai đến B sớm hơn xe thứ nhất đúng 1 giờ. Lúc quay trở về, xe thứ nhất tăng vận tốc thêm 5km/h, xe thứ hai vẫn giữ nguyên vận tốc như lúc đi nhưng dừng ở trạm nghỉ 36 phút, do đó xe thứ hai về đến A cùng lúc với xe thứ nhất. Biết rằng quãng đường từ A đến B là 180 km. Hỏi lúc đi, xe thứ nhất đến B lúc mấy giờ? Số nguyên dương m được gọi là số tốt nếu tổng các bình phương của tất cả các ước dương của nó (không tính 1 và m) bằng 6m + 8. Chứng minh rằng nếu có hai số nguyên tố p, q phân biệt và thỏa mãn pq là số tốt thì pq + 2 là số chính phương. Hy vọng rằng các em học sinh sẽ tự tin và thành công trong kỳ thi tuyển sinh!

Nguồn: sytu.vn

Đăng nhập để đọc

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 trường PTNK - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh; đề thi gồm 05 câu tự luận, thời gian làm bài 120 phút (không kể thời gian giao đề); kỳ thi được diễn ra vào thứ Hai ngày 06 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 trường PTNK – TP HCM : + Cho các phương trình x2 – 2ax + 3a = 0 (1) và x2 – 4x + a = 0 (2), trong đó a là tham số. a) Chứng minh rằng ít nhất một trong hai phương trình trên có nghiệm. b) Giả sử cả hai phương trình trên đều có hai nghiệm phân biệt. Gọi T1 và T2 lần lượt là tổng bình phương các nghiệm của (1) và (2). Chứng minh T1 + 5T2 > 68. + Cho phương trình 2^x + 5^y = k (x, y, k là các số nguyên dương). a) Chứng minh rằng với mọi k, phương trình không có nghiệm (x;y) với y chẵn. b) Tìm k để phương trình có nghiệm. + Cho tam giác ABC nhọn có H là trực tâm. Lấy D đối xứng với H qua A. Gọi I là trung điểm CD, đường tròn (I) đường kính CD cắt AB tại các điểm E, F (E thuộc tia AB). a) Chứng minh ECD = FCH và AE = AF. b) Chứng minh H là trực tâm của tam giác CEF. c) Gọi K là giao điểm BH và AC. Chứng minh tứ giác EFKH nội tiếp và EF là tiếp tuyến chung của các đường tròn ngoại tiếp các tam giác CKE và CKF. d) Chứng minh rằng tiếp tuyến tại C của (I) và tiếp tuyến tại K của đường tròn ngoại tiếp tam giác KEF cắt nhau trên đường thẳng AB.
Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2022 - 2023 trường PTNK - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (không chuyên) năm học 2022 – 2023 trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh; đề thi gồm 10 câu trắc nghiệm (02 điểm) và 04 câu tự luận (08 điểm), thời gian làm bài 120 phút (không kể thời gian giao đề). Trích dẫn đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2022 – 2023 trường PTNK – TP HCM : + Học sinh kẻ bảng sau vào giấy làm bài thi và trả lời các câu hỏi trắc nghiệm bằng cách: – Ghi 01 ký tự A hoặc B hoặc C hoặc D vào ô trả lời tương ứng với đáp án của câu hỏi. – Bỏ câu trả lời (nếu có) bằng cách gạch chéo ký tự (A hoặc B hoặc C hoặc D) đã ghi và ghi lại 01 ký tự (A hoặc B hoặc C hoặc D) vào ô trả lời tương ứng với đáp án của câu hỏi. + Hình vuông ABCD và hình chữ nhật MNPQ có tổng chu vi bằng 42(cm) và tổng diện tích bằng 55(cm2) và AB = MN. Tính độ dài AC khi MN là chiều rộng của hình chữ nhật MNPQ. + Sẻ Project là một dự án phi lợi nhuận của khối Văn trường Phổ Thông Năng Khiếu – ĐHQG TP. HCM, được thành lập từ năm 2018. Mỗi năm Sẻ đều tổ chức một chương trình thiện nguyện nhằm hỗ trợ cộng đồng. Gọi T2019, T2020, T2021 lần lượt là số tiền Sẻ quyên góp được trong các năm 2019, 2020, 2021. Ngoài các hiện vật, T2020 tăng 40% so với T2019 và bằng 7/10.T2021. Năm 2022, Sẻ đã đóng góp cho thư viện cộng đồng EVG ở xã Phong Thạnh, huyện Cầu Kè, tỉnh Trà Vinh (Phong Thạnh là một trong những xã nghèo, có tỷ lệ học sinh bỏ học cao ở các cấp) số tiền bằng 3 lần T2021 và so với T2019 thì tăng 50 triệu đồng. Tìm T2020.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào thứ Hai ngày 06 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Hà Tĩnh : + Hưởng ứng “Ngày sách và Văn hóa đọc Việt Nam năm 2022”, một nhà sách đã có chương trình giảm giá cho tất cả các loại sách. Bạn Nam đến mua một quyển sách tham khảo môn Toán và một quyển sách tham khảo môn Ngữ văn với tổng giá ghi trên hai quyển sách đó là 195000 đồng. Nhưng do quyển sách tham khảo môn Toán được giảm giá 20% và quyển sách tham khảo môn Ngữ văn được giảm giá 35% nên bạn Nam chỉ phải trả cho nhà sách 138000 đồng để mua hai quyển sách đó. Hỏi giá ghi trên mỗi quyển sách tham khảo đó là bao nhiêu? + Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Biết độ dài đoạn BC = 10 cm và sin ABC = 4/5. Tính độ dài các đoạn AC và BH. + Cho tam giác ABC nhọn nội tiếp đường tròn (O), đường cao AH (H thuộc BC). Kẻ HM vuông góc AB và HN vuông góc AC (M thuộc AB và N thuộc AC). a) Chứng minh AMHN là tứ giác nội tiếp. b) Đường thẳng MN cắt cung nhỏ AC của đường tròn (O) tại D. Chứng minh OA vuông góc MN và AD = AH.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Vĩnh Long
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Long (khóa thi ngày 04 tháng 06 năm 2022). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Vĩnh Long : + Một xe máy và một ô tô cùng khởi hành đi từ thành phố A đến thành phố B cách nhau 120 km. Vì vận tốc của ô tô lớn hơn vận tốc của xe máy 10 km/h nên ô tô đến B sớm hơn xe máy 36 phút. Tính vận tốc của xe máy. + Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Biết AB = 3 cm, BC = 5 cm. a) Tính độ dài các đoạn thẳng AC và AH. b) Gọi I là trung điểm của AC, tính độ dài đoạn thẳng AI và số đo góc ABI (làm tròn đến độ). + Cho tam giác nhọn ABC nội tiếp đường tròn (O). Vẽ hai đường cao BE và CF của tam giác ABC cắt nhau tại H (E thuộc AC và F thuộc AB). a) Chứng minh tứ giác AEHF nội tiếp được đường tròn. b) Chứng minh BH BE BF BA. c) Đường thẳng CF cắt đường tròn (O) tại D (D khác C). Gọi P, Q, I lần lượt là các điểm đối xứng của B qua AD, AC, CD; K là giao điểm của BP và AD. Chứng minh ba điểm P, I, Q thẳng hàng.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6