Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Phạm Hùng Hải

Tài liệu gồm 107 trang, được biên soạn bởi thầy giáo Phạm Hùng Hải, trình bày lý thuyết cần nhớ, các dạng toán thường gặp và bài tập tự luyện chuyên đề hàm số lũy thừa, hàm số mũ và hàm số lôgarit (Toán 12 phần Giải tích chương 2). MỤC LỤC : Chương 2 . HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT 1. §1 – LŨY THỪA 1. A LÝ THUYẾT CẦN NHỚ 1. B CÁC DẠNG TOÁN THƯỜNG GẶP 2. + Dạng 1. Tính giá trị biểu thức 2. + Dạng 2. Rút gọn biểu thức liên quan đến lũy thừa 3. + Dạng 3. So sánh hai lũy thừa 4. C BÀI TẬP TỰ LUYỆN 6. §2 – HÀM SỐ LŨY THỪA 9. A LÝ THUYẾT CẦN NHỚ 9. B CÁC DẠNG TOÁN THƯỜNG GẶP 9. + Dạng 1. Tìm tập xác định của hàm số lũy thừa 9. + Dạng 2. Tìm đạo hàm của hàm số lũy thừa 12. + Dạng 3. Đồ thị của hàm số lũy thừa 14. C BÀI TẬP TỰ LUYỆN 15. §3 – LÔGARIT 18. A LÝ THUYẾT CẦN NHỚ 18. B CÁC DẠNG TOÁN CƠ BẢN 19. + Dạng 1. So sánh hai lôgarit 19. + Dạng 2. Công thức, tính toán lôgarit 20. + Dạng 3. Phân tích biểu thức lôgarit theo các lo-ga-rit cho trước 22. + Dạng 4. Xác định một số nguyên dương có bao nhiêu chữ số 23. + Dạng 5. Tổng hợp biến đổi lôgarit nâng cao 24. C BÀI TẬP TỰ LUYỆN 29. §4 – HÀM SỐ MŨ, HÀM SỐ LÔGARIT 34. A LÝ THUYẾT CẦN NHỚ 34. B CÁC DẠNG TOÁN CƠ BẢN 36. + Dạng 1. Tìm tập xác định 36. + Dạng 2. Tính đạo hàm 38. + Dạng 3. Giá trị lớn nhất và giá trị nhỏ nhất 41. + Dạng 4.Các bài toán liên quan đến đồ thị 42. C BÀI TẬP TỰ LUYỆN 46. §5 – PHƯƠNG TRÌNH MŨ, PHƯƠNG TRÌNH LOGARIT CƠ BẢN 49. A LÝ THUYẾT CẦN NHỚ 49. B CÁC DẠNG TOÁN THƯỜNG GẶP 50. + Dạng 1. Giải phương trình mũ cơ bản, phương pháp đưa về cùng cơ số 50. + Dạng 2. Giải phương trình mũ bằng phương pháp đặt ẩn phụ 52. + Dạng 3. Giải phương trình mũ bằng phương pháp lôgarít hóa 54. + Dạng 4. Giải phương trình lôgarit cơ bản, phương pháp đưa về cùng cơ số 55. + Dạng 5. Giải phương trình lôgarít bằng phương pháp đặt ẩn phụ 57. + Dạng 6. Giải phương trình mũ và lôgarít bằng phương pháp hàm số 59. C BÀI TẬP TỰ LUYỆN 63. §6 – BẤT PHƯƠNG TRÌNH MŨ, BẤT PHƯƠNG TRÌNH LOGARIT CƠ BẢN 68. A LÝ THUYẾT CẦN NHỚ 68. B CÁC DẠNG TOÁN THƯỜNG GẶP 69. + Dạng 1. Giải bất phương trình mũ cơ bản, phương pháp đưa về cùng cơ số 69. + Dạng 2. Giải bất phương trình mũ bằng phương pháp đặt ẩn phụ 72. + Dạng 3. Giải bất phương trình logarit cơ bản, phương pháp đưa về cùng cơ số 74. + Dạng 4. Giải bất phương trình lôgarit bằng phương pháp đặt ẩn phụ 76. + Dạng 5. Bài toán lãi kép 77. C BÀI TẬP TỰ LUYỆN 80. §7 – PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH MŨ, LOGARIT CÓ CHỨA THAM SỐ 83. A CÁC DẠNG TOÁN THƯỜNG GẶP 83. + Dạng 1. Phương trình có nghiệm đẹp – Định lý Vi-ét 83. + Dạng 2. Phương trình không có nghiệm đẹp – Phương pháp hàm số 88. + Dạng 3. Bất phương trình – Phương pháp hàm số 92. B BÀI TẬP TỰ LUYỆN 96. §8 – ĐỀ TỔNG ÔN 99. A ĐỀ SỐ 1 99. Bảng đáp án 102. B ĐỀ SỐ 2 103. Bảng đáp án 105.

Nguồn: toanmath.com

Đăng nhập để đọc

Bài giảng logarit - Trần Văn Tài
Tài liệu bài giảng logarit gồm 81 trang được biên soạn bởi thầy Trần Văn Tài, tài liệu trình bày lý thuyết và bài tập có lời giải chi tiết các chủ đề hàm số logarit, phương trình logarit … trường chương trình Giải tích 12 chương 2. Nội dung tài liệu : 1. Lý thuyết về logarit: Trình bày định nghĩa, tính chất, các quy tắc tính lôgarit (lôrgarit của một tích, lôgarit của một thương, lôgarit của một lũy thừa, lôgarit thập phân – lôgarit tự nhiên) và bảng tóm tắt công thức mũ và lôgarit cần nhớ. 2. Bài tập logarit: a. Mức độ nhận biết và thông hiểu + Dạng 1. Sử dụng công thức lôgarit. + Dạng 2. Rút gọn hoặc tính giá trị của biểu thức lôgarit. + Dạng 3. Biểu diễn biểu thức lôgarit theo biểu thức cho trước. b. Mức độ vận dụng 3. Phiếu bài tập rèn luyện: Tuyển chọn các bài toán trắc nghiệm logarit có đáp án và lời giải chi tiết trong các đề thi thử Toán năm 2017 và 2018.
Tóm tắt lý thuyết và trắc nghiệm lũy thừa - mũ - logarit - Nguyễn Hữu Nhanh Tiến
Tài liệu gồm 27 trang tóm tắt lý thuyết SGK và tuyển chọn các bài toán trắc nghiệm lũy thừa – mũ – logarit có đáp án trong các đề thi THPT năm học 2017 – 2018, tài liệu được biên soạn bởi thầy Nguyễn Hữu Nhanh Tiến. Mục lục tài liệu : 1. Định nghĩa và các tính chất lũy thừa – mũ – logarit 2. Hàm số lũy thừa, hàm số mũ và hàm số logarit 3. Phương trình mũ và phương trình logarit 4. Bất phương trình mũ và bất phương trình logarit 5. Các bài toán ứng dụng a. Bài toán lãi đơn b. Bài toán lãi kép c. Bài toán gửi tiền hàng tháng vào ngân hàng d. Bài toán gửi tiền vào ngân hàng và rút tiền hàng tháng e. Bài toán vay vốn trả góp
Chinh phục các bài toán cực trị mũ và logarit - Nguyễn Minh Tuấn
Như ta đã biết trong đề thi môn toán của kì thi THPT Quốc Gia 2018 vừa qua có xuất hiện các bài toán cực trị mũ và logarit, đây là dạng toán khá mới lạ và đã gây lúng túng cho nhiều học sinh. Trong bài viết này tác giả Nguyễn Minh Tuấn sẽ cùng các bạn tìm hiểu phương pháp giải, cũng như phát triển bài toán cực trị mũ và logarit lên các mức độ cao hơn. • CÁC KIẾN THỨC CẦN NHỚ : Bất đẳng thức AM – GM, bất đẳng thức Cauchy – Schwarz, bất đẳng thức Minkowski, bất đẳng thức Holder, bất đẳng thức trị tuyệt đối, điều kiện có nghiệm của phương trình bậc 2, tính chất hàm đơn điệu … • CÁC DẠNG TOÁN CỰC TRỊ MŨ – LOGARIT : 1. KỸ THUẬT RÚT THẾ – ĐÁNH GIÁ ĐIỀU KIỆN ĐƯA VỀ HÀM MỘT BIẾN SỐ Đây là một kỹ thuật cơ bản nhất mà khi gặp các bài toán về cực trị mà ta sẽ luôn nghĩ tới, hầu hết chúng sẽ được giải quyết bằng cách thế một biểu thức từ giả thiết xuống yêu cầu từ đó sử dụng các công cụ như đạo hàm, bất đẳng thức để giải quyết. [ads] 2. HÀM ĐẶC TRƯNG Dạng toán này đề bài sẽ cho phương trình hàm đặc trưng từ đó ta sẽ đi tìm mối liên hệ giữa các biến và rút thế vào giả thiết thứ 2 để giải quyết yêu cầu bài toán. Nhìn chung dạng toán này ta chỉ cần nắm chắc được kỹ năng biến đổi làm xuất hiện được hàm đặc trưng kết hợp với kiến thức về đạo hàm là sẽ giải quyết được trọn vẹn. 3. CÁC BÀI TOÁN LIÊN QUAN TỚI ĐỊNH LÝ VI-ET Phương pháp chung của các bài toán ở dạng này hầu hết sẽ là đưa giả thiết phương trình logarit về dạng một tam thức, sau đó sử dụng định lý Vi-et và các phép biến đổi logarit để giải quyết bài toán. 4. CÁC BÀI TOÁN LIÊN QUAN TỚI BIỂU THỨC LOG_B A Vấn đề được đề cập tới ở đây thực chất chỉ là những bài toán biến đổi giả thiết theo ẩn log_b a và đưa về khảo sát hàm số một biến đơn giản. 5. SỬ DỤNG PHƯƠNG PHÁP ĐÁNH GIÁ BẤT ĐẲNG THỨC Đây chính là nội dung chính của chuyên đề mà tác giả Nguyễn Minh Tuấn muốn nhắc tới, một dạng toán lấy ý tưởng từ đề thi THPT Quốc Gia 2018. 6. CÁC BÀI TOÁN CÓ THAM SỐ 7. CÁC BÀI TOÁN VỀ DÃY SỐ
Trắc nghiệm nâng cao mũ - logarit - Đặng Việt Đông
Tài liệu gồm 141 trang được biên soạn bởi thầy Đặng Việt Đông tuyển chọn các bài toán trắc nghiệm nâng cao mũ – logarit có đáp án và lời giải chi tiết, các bài toán được trích dẫn từ các đề thi thử môn Toán, tài liệu phù hợp với các em học sinh khá, giỏi ôn luyện điểm 8 – 9 – 10 trong kỳ thi THPT Quốc gia môn Toán. + Vấn đề 1. Lũy thừa – mũ – lôgarit + Vấn đề 2. Phương trình, bất phương trình mũ + Vấn đề 3. Phương trình, bất phương trình lôgarit + Vấn đề 4. Bài toán lãi suất – trả góp + Vấn đề 5. Bài toán tăng trưởng [ads] Xem thêm : + Trắc nghiệm nâng cao số phức – Đặng Việt Đông (Giải tích 12 chương 4) + Trắc nghiệm nâng cao nguyên hàm, tích phân và ứng dụng – Đặng Việt Đông (Giải tích 12 chương 3) + Trắc nghiệm nâng cao hình học tọa độ Oxyz – Đặng Việt Đông (Hình học 12 chương 3)

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6