Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán THCS năm 2022 2023 phòng GD ĐT Ea H’Leo Đắk Lắk

Nội dung Đề học sinh giỏi Toán THCS năm 2022 2023 phòng GD ĐT Ea H’Leo Đắk Lắk Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán THCS năm 2022-2023 phòng GD&ĐT Ea H’Leo Đắk Lắk Đề thi học sinh giỏi Toán THCS năm 2022-2023 phòng GD&ĐT Ea H’Leo Đắk Lắk Chào đón quý thầy cô và các em học sinh lớp 9, đây là đề thi chọn học sinh giỏi môn Toán THCS cấp huyện năm học 2022-2023 do phòng Giáo dục và Đào tạo UBND huyện Ea H’Leo, tỉnh Đắk Lắk tổ chức. Kỳ thi sẽ diễn ra vào ngày 09 tháng 02 năm 2023. Trích dẫn một số câu hỏi từ Đề học sinh giỏi Toán THCS năm 2022-2023 phòng GD&ĐT Ea H’Leo Đắk Lắk: Chứng minh rằng với mọi số tự nhiên n lẻ, ta có công thức (n^2 - 1)/4 là tích của hai số tự nhiên liên tiếp. Cho M = 2.(9^2009 + 9^2008 + … + 9 + 1). Chứng minh rằng M không phải là số chính phương. Cho đường tròn tâm O đường kính AB và một điểm M bất kì thuộc đường tròn. Gọi H là hình chiếu vuông góc của điểm M trên AB. Đường tròn đường kính HM cắt các dây cung MA, MB lần lượt tại P và Q. a. Chứng minh rằng: PHQ = 90° và MP.MA = MQ.MB. b. Gọi E, F lần lượt là trung điểm của AH, BH. Tứ giác EPQF là hình gì? c. Xác định vị trí của M để tứ giác EPQF có diện tích lớn nhất. Mong rằng các thầy cô và các em học sinh sẽ tự tin và thành công trong kỳ thi sắp tới. Chúc quý vị sức khỏe và may mắn!

Nguồn: sytu.vn

Đăng nhập để đọc

Đề học sinh giỏi Toán 9 năm 2023 - 2024 trường THCS Đặng Thai Mai - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra học sinh giỏi môn Toán 9 năm học 2023 – 2024 trường THCS Đặng Thai Mai, thành phố Vinh, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 trường THCS Đặng Thai Mai – Nghệ An : + Cho hai số nguyên dương a, b thỏa mãn a > b và a2 + b2 + 1 = 2(ab + a + b). Chứng minh a, b là hai số chính phương liên tiếp. + Cho tam giác nhọn ABC đường cao AH. Gọi E, F là các điểm lần lượt thuộc các tia HC, HB sao cho EAB = FAC = 90°. a) Chứng minh HB HF FB HC HE CE. b) Gọi P thuộc đoạn thẳng AH (P khác A; P khác H). Trên tia đối của tia PE lấy điểm M sao cho BM = BA. Trên tia đối của tia PF lấy N sao cho CN = CA. Qua C vẽ đường thẳng vuông góc với PF cắt đường thẳng AH tại K. Chứng minh BP vuông góc KE. c) Các đường thẳng BM, CN cắt nhau tại S. Chứng minh SM = SN. + Cho năm số nguyên dương đôi một phân biệt sao cho mỗi số trong chúng không có ước nguyên tố nào khác 2 và 3. Chứng minh rằng trong năm số đó tồn tại hai số mà tích của chúng là một số chính phương.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Thạch Thất - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Thạch Thất, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Thạch Thất – Hà Nội : + Cho điểm M di động trên đoạn thẳng AB M AB. Trên cùng một nửa mặt phẳng bờ AB vẽ các hình vuông AMCD, BMEF và giao điểm hai đường chéo mỗi hình vuông lần lượt là O, O’. Gọi H là giao điểm của AE và BC. 1/ Chứng minh rằng: AE BC. 2/ Gọi I là giao của AC và BE. Chứng minh I là trung điểm của đoạn thẳng DF và ba điểm H, D, F thẳng hàng. 3/ Chứng minh rằng đường thẳng DF luôn đi qua một điểm cố định khi điểm M di động trên đoạn thẳng AB. + Cho tam giác đều ABC, điểm M nằm trong tam giác ABC sao cho AM2 = BM2 + CM2. Tính số đo góc BMC?
Đề chọn HSG huyện Toán 9 năm 2023 - 2024 phòng GDĐT Tân Sơn - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 THCS năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tân Sơn, tỉnh Phú Thọ; đề thi gồm 03 trang, gồm 16 câu trắc nghiệm (08 điểm) + 04 câu tự luận (12 điểm), thời gian làm bài 150 phút (không kể thời gian giao đề). Trích dẫn Đề chọn HSG huyện Toán 9 năm 2023 – 2024 phòng GD&ĐT Tân Sơn – Phú Thọ : + Cho điểm A di chuyển trên đường tròn tâm O đường kính BC R 2 (A không trùng với B và C). Trên tia AB lấy điểm M sao cho B là trung điểm của AM. Gọi H là hình chiếu vuông góc của A lên BC và I là trung điểm của HC. Chứng minh: a) Tam giác AHM và tam giác CIA đồng dạng. b) MH vuông góc với AI. c) M chuyển động trên một đường tròn cố định. + Cho đường tròn O R đường kính AB. Đường thẳng d tiếp xúc với đường tròn tại A và M là điểm di động trên đường thẳng d M A. Đường thẳng qua O vuông góc với BM cắt đường thẳng d tại N. Giá trị nhỏ nhất của MN bằng? + Một đồng hồ có kim giờ dài 4cm và kim phút dài 6cm. Lúc 16 giờ đúng khoảng cách giữa hai đầu kim là?
Đề khảo sát HSG Toán 9 lần 2 năm 2023 - 2024 phòng GDĐT Tam Kỳ - Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát học sinh giỏi môn Toán 9 lần 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Tam Kỳ, tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 02 tháng 11 năm 2023.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6