Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương trình bậc hai một ẩn - Nguyễn Tiến

Tài liệu gồm 103 trang hướng dẫn giải và biện luận phương trình bậc hai một ẩn, các dạng toán liên quan đến phương trình bậc hai và các dạng phương trình quy về phương trình bậc hai. Tài liệu được biên soạn bởi tác giả Nguyễn Tiến. Nội dung tài liệu : I. PHƯƠNG TRÌNH BẬC HAI MỘT ẨN 1. Nhắc lại về giải phương trình bậc nhất một ẩn. 2. Kiến thức chung về phương trình bậc hai một ẩn. 3. Các dạng bài tập: a. Phương trình không chứa tham số. + Xác định phương trình bậc hai và các hệ số của phương trình bậc hai. + Giải phương trình bậc hai dạng tổng quát ax^2 + bx + c = 0. + Giải phương trình bậc hai khuyết b hoặc c. + Cho phương trình bậc hai, tính giá trị của biểu thức chứa nghiệm. + Lập phương trình bậc hai khi biết tổng và tích của hai nghiệm. b. Phương trình chứa tham số – giải phương trình bậc hai và bài toán phụ. + Giải và biện luận phương trình. + Tìm giá trị tham số của phương trình để phương trình có nghiệm thoả mãn một điều kiện cho trước. + Chứng minh rằng phương trình luôn có nghiệm với mọi giá trị tham số của phương trình. + Lập hệ thức liên hệ giữa x1, x2 sao cho x1, x2 độc lập đối giá trị tham số của phương trình. + Tìm giá trị tham số của phương trình thoả mãn biểu thức chứa nghiệm. + Tìm điều kiện của giá trị tham số của phương trình để biểu thức liên hệ giữa các nghiệm lớn nhất, nhỏ nhất. + Tìm công thức tổng quát của phương trình khi biết một nghiệm, tính nghiệm còn lại. [ads] c. Phương trình bậc cao – phương trình quy về phương trình bậc hai. + Phương trình trùng phương. + Phương trình chứa ẩn ở mẫu thức. + Phương trình tích. d. Giải phương trình bậc cao bằng phương pháp đặt ẩn phụ. + Dạng 1: Phương trình đối xứng (phương trình hồi quy). + Dạng 2: Phương trình: (x + a)(x + b)(x + c)(x + d) = e, trong đó a + b = c + d. + Dạng 3: Phương trình (x + a)(x + b)(x + c)(x + d) = ex^2, trong đó ab = cd. + Dạng 4: Phương trình (x + a)^4 + (x + b)^4 = c. + Dạng 5: Phương trình chứa mẫu số là phương trình bậc hai. II. PHƯƠNG TRÌNH BẬC CAO – PHỨC TẠP + Phương trình có ẩn ở trong dấu giá trị tuyệt đối. + Phương trình có chứa căn thức. + Phương pháp đặt ẩn số phụ. + Áp dụng bất đẳng thức. + Phương trình chứa nhiều căn bậc lẻ. + Phương trình chứa cả căn bậc chẵn và căn bậc lẻ.

Nguồn: toanmath.com

Đăng nhập để đọc

Chủ đề dấu tam thức bậc hai Toán 10 KNTTVCS - Lê Bá Bảo
Tài liệu gồm 30 trang, được biên soạn bởi thầy giáo Lê Bá Bảo, bao gồm tóm tắt lý thuyết, bài tập tự luận và bài tập trắc nghiệm (có đáp án và lời giải chi tiết) chủ đề dấu tam thức bậc hai trong chương trình Toán 10 Kết Nối Tri Thức Với Cuộc Sống (KNTTVCS). I. TÓM TẮT LÝ THUYẾT 1. Tam thức bậc hai. Tam thức bậc hai (đối với x) là biểu thức có dạng 2 ax bx c trong đó a b c là những số thực cho trước (với a 0), được gọi là các hệ số của tam thức bậc hai. Chú ý: +) Nghiệm của phương trình bậc hai 2 ax bx c 0 cũng được gọi là nghiệm của tam thức bậc hai 2 ax bx c. +) 2 b ac 4 và 2 b ac với b b 2 tương ứng được gọi là biệt thức và biệt thức thu gọn của tam thức bậc hai 2 ax bx c. 2. Định lý về dấu tam thức bậc hai. Cho tam thức bậc hai 2 f x ax bx c (với a 0). +) Nếu 0 thì f x cùng dấu với hệ số a với mọi x. +) Nếu 0 thì f x cùng dấu với hệ số a với mọi 2 b x a và 0. +) Nếu 0 thì tam thức f x có hai nghiệm phân biệt 1 x và 2 x x x 1 2. Khi đó f x cùng dấu với hệ số a với mọi x x x 1 2 f x trái dấu với hệ số a với mọi x x x 1 2. Chú ý. Trong định lí về dấu tam thức bậc hai có thể thay bởi. 3. Bất phương trình bậc hai. +) Bất phương trình bậc hai ẩn x là bất phương trình có dạng 2 ax bx c 0 (hoặc 2 ax bx c 0 2 ax bx c 0 2 ax bx c 0), trong đó abc là những số thực đã cho và a 0. +) Số thực 0 x gọi là một nghiệm của bất phương trình bậc hai 2 ax bx c 0 nếu 2 0 0 ax bx c 0. Tập hợp gồm tất cả các nghiệm của bất phương trình bậc hai 2 ax bx c 0 gọi là tập nghiệm của bất phương trình này. +) Giải bất phương trình bậc hai 2 f x ax bx c 0 là tìm tập nghiệm của nó, tức là tìm các khoảng mà trong đó f x cùng dấu với hệ số a (nếu a 0) hay trái dấu với hệ số a (nếu a 0). Để giải bất phương trình bậc hai 2 ax bx c 0 (hoặc 2 ax bx c 0 2 ax bx c 0 2 ax bx c 0) ta cần xét dấu tam thức 2 ax bx c từ đó suy ra tập nghiệm. II. BÀI TẬP TỰ LUẬN III. BÀI TẬP TRẮC NGHIỆM
Chuyên đề bất phương trình bậc hai một ẩn Toán 10 Chân Trời Sáng Tạo
Tài liệu gồm 144 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề bất phương trình bậc hai một ẩn trong chương trình SGK Toán 10 Chân Trời Sáng Tạo (CTST), có đáp án và lời giải chi tiết. BÀI 1 . DẤU CỦA TAM THỨC BẬC HAI. Dạng toán. Xét dấu biểu thức (xét dấu của: Tam thức bậc hai, biểu thức có dạng tích hoặc thương của các tam thức bậc hai). BÀI 2 . GIẢI BẤT PHƯƠNG TRÌNH BẬC HAI. HỆ THỐNG BÀI TẬP TỰ LUẬN: Dạng 1. Giải bất phương trình (giải bất phương trình bậc hai, bất phương trình dạng tích, thương của các tam thức bậc hai, bất phương trình đưa về bậc hai). Dạng 2. Điều kiện về dấu của tam thức bậc hai. Dạng 3. Điều kiện về nghiệm của tam thức bậc hai (tìm điều kiện của tham số để tam thức bậc hai có nghiệm thỏa mãn điều kiện). HỆ THỐNG BÀI TẬP TRẮC NGHIỆM: Dạng 1. Giải bất phương trình bậc hai và một số bài toán liên quan. Dạng 2. Bất phương trình tích. Dạng 3. Bất phương trình chứa ẩn ở mẫu. Dạng 4. Bài toán chứa tham số. + Dạng 4.1. Tìm m để phương trình có n nghiệm. + Dạng 4.2. Tìm m để phương trình bậc 2 có nghiệm thỏa mãn điều kiện cho trước. + Dạng 4.3. Tìm m để bpt thỏa mãn điều kiện cho trước. BÀI 3 . PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI.
Chuyên đề hàm số bậc hai và đồ thị Toán 10 Chân Trời Sáng Tạo
Tài liệu gồm 216 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề hàm số bậc hai và đồ thị trong chương trình SGK Toán 10 Chân Trời Sáng Tạo (CTST), có đáp án và lời giải chi tiết. BÀI 1 . HÀM SỐ VÀ ĐỒ THỊ. BÀI TẬP TỰ LUẬN. Dạng 1. Tìm tập xác định của hàm số. Dạng 2. Tìm điều kiện để hàm số xác định trên một tập k cho trước. Dạng 3. Tập giá trị của hàm số. Dạng 4. Tính đồng biến, nghịch biến của hàm số. Dạng 5. Tìm điều kiện của tham số để hàm số đồng biến (nghịch biến) trên một tập hợp cho trước. Dạng 6. Bài toán thực tế. BÀI TẬP TRẮC NGHIỆM. Dạng 1. Tập xác định của hàm số. Dạng 2. Xác định sự biến thiên của hàm số cho trước. Dạng 3. Xác định sự biến thiên thông qua đồ thị của hàm số. Dạng 4. Một số bài toán liên quan đến đồ thị của hàm số. BÀI 2 . HÀM SỐ BẬC HAI. BÀI TẬP TỰ LUẬN. Vấn đề 1. Tìm điều kiện để hàm số y = ax2 + bx + c đồng biến trên khoảng. Vấn đề 2. Xác định hàm số bậc hai. Vấn đề 3. Đồ thị hàm số bậc hai. Vấn đề 4. Tương giao đồ thị. Vấn đề 5. Điểm cố định của đồ thị hàm số. Vấn đề 6. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số bậc hai. Vấn đề 7. Bài toán thực tế. BÀI TẬP TRẮC NGHIỆM. Dạng 1. Sự biến thiên. Dạng 2. Xác định toạ độ đỉnh, trục đối xứng, hàm số bậc hai thỏa mãn điều kiện cho trước. Dạng 3. Đọc đồ thị, bảng biến thiên của hàm số bậc hai. Dạng 4. Giá trị lớn nhất, giá trị nhỏ nhất. Dạng 5. Sự tương giao giữa parabol với đồ thị các hàm số. Dạng 6. Ứng dụng thực tế liên quan đến hàm số bậc hai.
Chuyên đề hàm số và đồ thị Toán 10 Cánh Diều
Tài liệu gồm 405 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề hàm số và đồ thị trong chương trình SGK Toán 10 Cánh Diều (viết tắt: Toán 10 CD), có đáp án và lời giải chi tiết. Bài 1 . Hàm số và đồ thị. + Dạng 1. Tìm tập xác định của hàm số. + Dạng 2. Tìm điều kiện để hàm số xác định trên một tập k cho trước. + Dạng 3. Tập giá trị của hàm số. + Dạng 4. Tính đồng biến, nghịch biến của hàm số. + Dạng 5. Tìm điều kiện của tham số để hàm số đồng biến (nghịch biến) trên một tập hợp cho trước. + Dạng 6. Bài toán thực tế. Bài 2 . Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng. + Vấn đề 1. Tìm điều kiện để hàm số y = ax2 + bx + c đồng biến trên khoảng (a;b). + Vấn đề 2. Xác định hàm số bậc hai. + Vấn đề 3. Đồ thị hàm số bậc hai. + Vấn đề 4. Tương giao đồ thị. + Vấn đề 5. Điểm cố định của đồ thị hàm số. + Vấn đề 6. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số bậc hai. + Vấn đề 7. Bài toán thực tế. Bài 3 . Dấu của tam thức bậc hai. + Dạng toán. Xét dấu biểu thức. Bài 4 . Giải bất phương trình bậc hai. + Dạng 1. Giải bất phương trình. + Dạng 2. Điều kiện về dấu của tam thức bậc hai. + Dạng 3. Điều kiện về nghiệm của tam thức bậc hai. Bài 5 . Hai dạng phương trình quy về phương trình bậc hai.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6