Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đường thẳng song song và đường thẳng cắt nhau

Nội dung Chuyên đề đường thẳng song song và đường thẳng cắt nhau Bản PDF - Nội dung bài viết Tài liệu chuyên đề đường thẳng song song và đường thẳng cắt nhau Tài liệu chuyên đề đường thẳng song song và đường thẳng cắt nhau Tài liệu này được biên soạn bởi tác giả Toán Học Sơ Đồ, gồm 25 trang nhằm tổng hợp kiến thức trọng tâm về chuyên đề đường thẳng song song và đường thẳng cắt nhau. Được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Đại số lớp 9 chương 2 bài số 4. Phần kiến thức cần nhớ: 1. Hệ số góc của đường thẳng y = ax + b (a khác 0). 2. Đường thẳng song song và đường thẳng cắt nhau. Các dạng minh họa: Dạng 1: - Xác định vị trí tương đối của hai đường thẳng d và d'. - Phương pháp giải: So sánh hệ số góc và hằng số của hai đường thẳng. Dạng 2: - Xác định phương trình đường thẳng từ điều kiện đã cho. Trắc nghiệm rèn luyện phản xạ: - Cung cấp các câu hỏi trắc nghiệm để học sinh rèn luyện và kiểm tra kiến thức về chuyên đề đường thẳng. Phiếu bài tập tự luyện: - Cung cấp các bài tập tự luyện để học sinh tự rèn luyện và kiểm tra kiến thức sau khi học bài. Tài liệu này sẽ giúp học sinh nắm vững kiến thức về đường thẳng song song và đường thẳng cắt nhau, từ đó nâng cao hiệu suất học tập và đạt kết quả cao trong môn Toán.

Nguồn: sytu.vn

Đăng nhập để đọc

Hướng dẫn giải bài tập sách giáo khoa Toán 9 Cánh Diều
Tài liệu gồm 313 trang, hướng dẫn giải bài tập sách giáo khoa Toán 9 Cánh Diều (tập 1 và tập 2). MỤC LỤC : Chương 1 . PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH BẬC NHẤT 1. §1 – PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN 1. A Phương trình tích có dạng (ax + b)(cx + d) = 0 (a khác 0; c khác 0) 1. B Phương trình chứa ẩn ở mẫu 3. C Bài tập 5. §2 – PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 10. A Phương trình bậc nhất hai ẩn 10. B Hệ hai phương trình bậc nhất hai ẩn 13. C Bài tập 15. §3 – GIẢI HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 20. A Giải hệ phương trình bằng phương pháp thế 20. B Giải hệ phương trình bằng phương pháp cộng đại số 22. C Sử dụng máy tính cầm tay để tìm nghiệm của hệ phương trình bậc nhất hai ẩn 25. D Bài tập 26. §4 – BÀI TẬP CUỐI CHƯƠNG I 31. Chương 2 . BẤT ĐẲNG THỨC. BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN 39. §1 – BẤT ĐẲNG THỨC 39. A Nhắc lại về thứ tự trong tập hợp số thực 39. B Bất đẳng thức 40. C Bài tập 44. §2 – BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN 47. A Mở đầu về bất phương trình một ẩn 47. B Bất phương trình bậc nhất một ẩn 48. C Cách giải 48. D Bài tập 52. §3 – BÀI TẬP CUỐI CHƯƠNG II 56. Chương 3 . CĂN THỨC 62. §1 – CĂN BẬC HAI VÀ CĂN BẬC BA CỦA SỐ THỰC 62. A Căn bậc hai của số thực không âm 62. B Căn bậc ba 64. C Sử dụng máy tính cầm tay để tìm căn bậc hai, căn bậc ba của một số hữu tỉ 65. D Bài tập 67. §2 – CĂN THỨC 70. A Một số phép tính về căn bậc hai 70. B Bài tập 74. §3 – CĂN THỨC BẬC HAI VÀ CĂN THỨC BẬC BA CỦA BIỂU THỨC ĐẠI SỐ 78. A Căn thức bậc hai 78. B Căn thức bậc ba 80. C Bài tập 83. §4 – MỘT SỐ PHÉP BIẾN ĐỔI CĂN THỨC BẬC HAI CỦA BIỂU THỨC ĐẠI SỐ 86. A Căn thức bậc hai của một bình phương 86. B Căn thức bậc hai của một tích 86. C Căn thức bậc hai của một thương 87. D Trục căn thức ở mẫu 88. E Bài tập 90. §5 – BÀI TẬP CUỐI CHƯƠNG III 93. Chương 4 . HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG 98. §1 – TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN 98. A Tỉ số lượng giác của góc nhọn 98. B Tỉ số lượng giác của hai góc phụ nhau 100. C Sử dụng máy tính cầm tay để tìm giá trị lượng giác của một góc nhọn 103. D Bài tập 104. §2 – MỘT SỐ HỆ THỨC LƯỢNG VỀ CẠNH VÀ GÓC TRONG TAM GIÁC VUÔNG 108. A Tính cạnh góc vuông theo cạnh huyền và tỉ số lượng giác của góc nhọn 108. B Tính cạnh góc vuông theo cạnh góc vuông còn lại và tỉ số lượng giác của góc nhọn 110. C Áp dụng tỉ số lượng giác của góc nhọn để giải tam giác vuông 110. D Bài tập 113. §3 – ỨNG DỤNG CỦA TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN 117. A Ước lượng khoảng cách 117. B Bài tập 120. §4 – BÀI TẬP CUỐI CHƯƠNG IV 123. Chương 5 . ĐƯỜNG TRÒN 126. §1 – ĐƯỜNG TRÒN. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN 126. A Khái niệm đường tròn 126. B Liên hệ giữa đường kính và dây của đường tròn 127. C Tính đối xứng của đường tròn 128. D Vị trí tương đối của hai đường tròn 130. E Bài tập 130. §2 – VỊ TRÍ TƯƠNG ĐỐI GIỮA ĐƯỜNG THẲNG VÀ ĐƯỜNG TRÒN 134. A Đường thẳng và đường tròn cắt nhau 134. B Đường thẳng và đường tròn tiếp xúc nhau 134. C Đường thẳng và đường tròn không giao nhau 135. D Bài tập 136. §3 – TIẾP TUYẾN CỦA ĐƯỜNG TRÒN 139. A Nhận biết tiếp tuyến của đường tròn 139. B Tính chất của hai tiếp tuyến cắt nhau 142. C Bài tập 144. §4 – GÓC Ở TÂM – GÓC NỘI TIẾP 148. A Góc ở tâm 148. B Cung. Số đo cung 149. C Góc nội tiếp 153. D Bài Tập 155. §5 – ĐỘ DÀI CUNG TRÒN, DIỆN TÍCH HÌNH QUẠT TRÒN, DIỆN TÍCH HÌNH VÀNH KHUYÊN 159. A Độ dài cung tròn 159. B Diện tích hình quạt tròn 160. C Diện tích hình vành khuyên 163. D Bài tập 164. §6 – BÀI TẬP CUỐI CHƯƠNG V 167. Chương 6 . MỘT SỐ YẾU TỐ THỐNG KÊ VÀ XÁC SUẤT 172. §1 – MÔ TẢ VÀ BIỂU DIỄN DỮ LIỆU TRÊN CÁC BẢNG, BIỂU ĐỒ 172. A Biểu diễn dữ liệu trên bảng thống kê, biểu đồ tranh 172. B Biểu diễn dữ liệu trên biểu đồ cột, biểu đồ cột ghép 173. C Biểu diễn dữ liệu trên biểu đồ đoạn thẳng 175. D Biểu diễn dữ liệu trên biểu đồ hình quạt tròn 177. E Bài tập 180. §2 – TẦN SỐ. TẦN SỐ TƯƠNG ĐỐI 186. A Tần số. Bảng tần số. Biểu đồ tần số 186. B Tần số tương đối. Bảng tần số tương đối. Biểu đồ tần số tương đối 189. C Bài tập 192. §3 – TẦN SỐ GHÉP NHÓM. TẦN SỐ TƯƠNG ĐỐI GHÉP NHÓM 196. A Mẫu số liệu ghép nhóm 196. B Tần số ghép nhóm. Bảng tần số ghép nhóm 197. C Tần số tương đối ghép nhóm. Bảng tần số tương đối ghép nhóm. Biểu đồ tần số tương đối ghép nhóm 199. D Bài tập 202. §4 – PHÉP THỬ NGẪU NHIÊN VÀ KHÔNG GIAN MẪU. XÁC SUẤT CỦA BIẾN CỐ 207. A Phép thử ngẫu nhiên và không gian mẫu 207. B Xác suất của biến cố 208. C Bài tập 211. §5 – ÔN TẬP CHƯƠNG VI 215. Chương 7 . HÀM SỐ Y = AX2 (A KHÁC 0) 220. §1 – HÀM SỐ Y = AX2 (A KHÁC 0) 220. A Hàm số y = ax2 (a khác 0) 220. B Đồ thị hàm số y = ax2 (a khác 0) 221. C Bài tập 224. §2 – PHƯƠNG TRÌNH BẬC HAI MỘT ẨN 228. A Định nghĩa 228. B Giải phương trình 228. C Ứng dụng của phương trình bậc hai một ẩn 232. D Sử dụng máy tính cầm tay để tìm nghiệm của phương trình bậc hai một ẩn 235. E Bài tập 235. §3 – ĐỊNH LÍ VI-ÉT 240. A Định lí Vi-ét 240. B Tìm hai số khi biết tổng và tích 242. C Bài tập 243. §4 – BÀI TẬP CUỐI CHƯƠNG VII 247. Chương 8 . ĐƯỜNG TRÒN NGOẠI TIẾP VÀ ĐƯỜNG TRÒN NỘI TIẾP 253. §1 – ĐƯỜNG TRÒN NGOẠI TIẾP TAM GIÁC. ĐƯỜNG TRÒN NỘI TIẾP TAM GIÁC 253. A Đường tròn ngoại tiếp tam giác 253. B Đường tròn nội tiếp tam giác 256. C Bài tập 258. §2 – TỨ GIÁC NỘI TIẾP ĐƯỜNG TRÒN 263. A Định nghĩa 263. B Tính chất 264. C Hình chữ nhật, hình vuông nội tiếp đường tròn 264. D Bài tập 265. §3 – BÀI TẬP CUỐI CHƯƠNG VIII 270. Chương 9 . ĐA GIÁC ĐỀU 272. §1 – ĐA GIÁC ĐỀU. HÌNH ĐA GIÁC ĐỀU TRONG THỰC TIỄN 272. A Đa giác. Đa giác lồi 272. B Đa giác đều 274. C Hình đa giác đều trong thực tiễn 275. D Bài tập 276. §2 – PHÉP QUAY 278. A Khái niệm 278. B Phép quay giữ nguyên hình đa giác đều 279. C Bài tập 280. §3 – BÀI TẬP CUỐI CHƯƠNG IX 283. Chương 10 . HÌNH HỌC TRỰC QUAN 287. §1 – HÌNH TRỤ 287. A Hình trụ 287. B Diện tích xung quanh của hình trụ 289. C Thể tích của hình trụ 290. D Bài tập 290. §2 – HÌNH NÓN 294. A Hình nón 294. B Diện tích xung quanh của hình nón 294. C Thể tích của hình nón 295. D Bài tập 296. §3 – HÌNH CẦU 299. A Hình cầu 299. B Diện tích mặt cầu 300. C Thể tích của khối cầu 301. D Bài tập 301. §4 – BÀI TẬP CUỐI CHƯƠNG X 303.
Vở bài tập Toán 9 tập 2 phần Hình học
Tài liệu gồm 81 trang, tuyển tập các dạng bài tập trắc nghiệm và tự luận môn Toán 9 tập 2 phần Hình học. CHƯƠNG 3 . GÓC VỚI ĐƯỜNG TRÒN. Bài 1. GÓC Ở TÂM. SỐ ĐO CUNG. Dạng 1: Tìm số đo góc ở tâm – Số đo cung bị chắn. Bài 2. LIÊN HỆ GIỮA CUNG VÀ DÂY. Dạng 1: So sánh hai cung. Bài 3. GÓC NỘI TIẾP. Dạng 1: Tính số đo góc, chứng minh các góc bằng nhau, đoạn thẳng bằng nhau. Dạng 2: Chứng minh hai đường thẳng vuông góc, ba điểm thẳng hàng. Bài 4. GÓC TẠO BỞI TIA TIẾP TUYẾN VÀ DÂY CUNG. Dạng 1: Tính số đo góc, chứng minh các góc bằng nhau, các đẳng thức hoặc tam giác đồng dạng. Dạng 2: Chứng minh hai đường thẳng song song, hai đường thẳng vuông góc, một tia là tiếp tuyến của đường tròn. Bài 5. GÓC CÓ ĐỈNH Ở BÊN TRONG. BÊN NGOÀI ĐƯỜNG TRÒN. Dạng 1: Chứng minh hai góc hoặc hai đoạn thẳng bằng nhau. Dạng 2: Chứng minh hai đường thẳng song song hoặc vuông góc hoặc các đẳng thức cho trước. Bài 6. CUNG CHỨA GÓC. Dạng 1: Quỹ tích là cung chứa góc a. Dạng 2: Dựng cung chứa góc. Bài 7. TỨ GIÁC NỘI TIẾP. Dạng 1: Tính số đo các góc và chứng minh tứ giác nội tiếp. Dạng 2: Khai thác tính chất của tứ giác nội tiếp. Bài 8. ĐỘ DÀI ĐƯỜNG TRÒN. CUNG TRÒN. Bài 9. DIỆN TÍCH HÌNH TRÒN – HÌNH QUẠT TRÒN. ÔN TẬP CHƯƠNG III. CHƯƠNG 4 . HÌNH TRỤ – HÌNH NÓN – HÌNH CẦU. Bài 1. HÌNH TRỤ. DIỆN TÍCH XUNG QUANH VÀ THỂ TÍCH CỦA HÌNH TRỤ. Dạng 1: Tính chiều cao, bán kính đáy, diện tích xung quanh, diện tích toàn phần, thể tích. Dạng 2: Dạng toán tổng hợp. Bài 2. HÌNH NÓN – HÌNH NÓN CỤT. DIỆN TÍCH XUNG QUANH VÀ THỂ TÍCH CỦA HÌNH NÓN, HÌNH NÓN CỤT. Dạng 1: Tính diện tích, thể tích và các đại lượng liên quan đến hình nón và hình nón cụt. Dạng 2: Dạng toán tổng hợp. Bài 3. HÌNH CẦU – DIỆN TÍCH MẶT CẦU VÀ THỂ TÍCH HÌNH CẦU. Dạng 1: Tính diện tích mặt cầu, thể tích hình cầu và các đại lượng liên quan. Dạng 2: Dạng toán tổng hợp. ÔN TẬP CHƯƠNG IV.
Vở bài tập Toán 9 tập 2 phần Đại số
Tài liệu gồm 222 trang, tuyển tập các dạng bài tập trắc nghiệm và tự luận môn Toán 9 tập 2 phần Đại số. CHƯƠNG 3 . HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. Bài 1. PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. Dạng 1: Nhận biết hàm số bậc nhất y = ax + b. Dạng 2: Kiểm tra các cặp số cho trước có là nghiệm của phương trình bậc nhất hai ẩn không? Dạng 3: Tìm một nghiệm của phương trình bậc nhất hai ẩn. Dạng 4: Viết nghiệm tổng quát và vẽ đường thẳng biểu diễn tập nghiệm của phương trình. Dạng 5: Tìm điều kiện của tham số để đường thẳng đi qua một điểm cho trước. Dạng 6: Vẽ cặp đường thẳng và tìm giao điểm của chúng. Bài 2. HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. Dạng 1: Kiểm tra cặp số cho trước có là nghiệm của hệ phương trình đã cho hay không? Dạng 2: Đoán nhận số nghiệm của hệ phương trình. Dạng 3: Tìm nghiệm của hệ bằng phương pháp hình học. Dạng 4: Tìm điều kiện của tham số để hệ phương trình thỏa mãn điều kiện cho trước. Dạng 5: Vị trí tương đối của hai đường thẳng. Bài 3. GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾ. Dạng 1: Giải hệ phương trình bằng phương pháp thế. Dạng 2: Giải hệ phương trình quy về phương trình bậc nhất hai ẩn. Dạng 3: Sử dụng đặt ẩn phụ giải hệ phương trình quy về phương trình bậc nhất hai ẩn. Dạng 4: Tìm điều kiện của tham số để hệ phương trình thỏa mãn điều kiện cho trước. Bài 4. GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP CỘNG ĐẠI SỐ. Dạng 1: Giải hệ phương trình bằng phương pháp cộng đại số. Dạng 2: Giải hệ phương trình quy về hệ phương trình bậc nhất hai ẩn. Dạng 3: Giải phương trình bằng phương pháp đặt ẩn phụ. Dạng 4: Tìm điều kiện của tham số để hệ phương trình thỏa mãn điều kiện cho trước. Bài 5. GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH. Dạng 1: Bài toán về quan hệ giữa các số. Dạng 2: Bài toán về chuyển động. Bài 6. GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH (TT). Dạng 1: Bài toán về công việc làm chung và làm riêng. Dạng 2: Bài toán về năng suất lao động. Dạng 3: Bài toán về tỉ lệ phần trăm. Dạng 4: Bài toán về nội dung hình học. Dạng 5: Bài toán về nội dung sắp xếp chia đều. ÔN TẬP CHƯƠNG III. ĐỀ KIỂM TRA CHƯƠNG 3 – MÔN TOÁN 9 – ĐỀ SỐ 1. ĐỀ KIỂM TRA CHƯƠNG 3 – MÔN TOÁN 9 – ĐỀ SỐ 2. CHƯƠNG 4 . HÀM SỐ Y = AX2. PHƯƠNG TRÌNH BẬC HAI MỘT ẨN. Bài 1. HÀM SỐ Y = AX2 (A KHÁC 0). Dạng 1: Tính giá trị của hàm số tại một điểm cho trước. Dạng 2: Xét tính đồng biến, nghịch biến của hàm số. Bài 2. ĐỒ THỊ CỦA HÀM SỐ Y = AX2 (A KHÁC 0). Dạng 1: Vẽ đồ thị hàm số. Dạng 2: Tọa độ giao điểm của Parabol và đường thẳng. Bài 3. PHƯƠNG TRÌNH BẬC HAI MỘT ẨN. Dạng 1: Nhận dạng và tìm hệ số của phương trình bậc hai một ẩn. Dạng 2: Sử dụng các phép biến đổi, giải phương trình bậc hai một ẩn cho trước. Bài 4. CÔNG THỨC NGHIỆM CỦA PHƯƠNG TRÌNH BẬC HAI. Dạng 1: Sử dụng công thức nghiệm để giải phương trình bậc hai một ẩn cho trước. Dạng 2: Sử dụng công thức nghiệm, xác định số nghiệm của phương trình dạng bậc hai. Dạng 3: Giải và biện luận phương trình dạng bậc hai. Dạng 4: Một số bài toán về tính số nghiệm của phương trình bậc hai. Bài 5. CÔNG THỨC NGHIỆM THU GỌN. Dạng 1: Sử dụng công thức nghiệm thu gọn, giải phương trình bậc hai. Dạng 2: Sử dụng công thức nghiệm thu gọn, xác định số nghiệm của phương trình bậc hai. Dạng 3: Giải và biện luận phương trình dạng bậc hai. Bài 6. HỆ THỨC VI-ÉT VÀ ỨNG DỤNG. Dạng 1: Không giải phương trình, tính giá trị của biểu thức đối xứng giữa các nghiệm. Dạng 2: Giải phương trình bằng cách nhẩm nghiệm. Dạng 3: Tìm hai số khi biết tổng và tích của chúng. Dạng 4: Phân tích tam giác bậc hai thành nhân tử. Dạng 5: Xét dấu các nghiệm của phương trình bậc hai. Dạng 6: Xác định điều kiện của tham số để phương trình bậc hai có nghiệm thỏa mãn hệ thức cho trước. Bài 7. PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI. Dạng 1: Giải phương trình trùng phương. Dạng 2: Giải phương trình chứa ẩn ở mẫu. Dạng 3: Giải phương trình tích. Dạng 4: Giải phương trình bằng phương pháp đặt ẩn phụ. Bài 8. GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH. Dạng 1: Toán có nội dung hình học. Dạng 2: Bài toán có quan hệ về số. Dạng 3: Bài toán về năng suất lao động. Dạng 4: Bài toán về công việc làm chung, làm riêng. Dạng 5: Bài toán về chuyển động. Dạng 6: Bài toán chuyển động có vận tốc cản. Dạng 7: Các dạng toán khác. ÔN TẬP CHƯƠNG IV. ĐỀ KIỂM TRA CHƯƠNG IV – ĐỀ SỐ 1. ĐỀ KIỂM TRA CHƯƠNG IV – ĐỀ SỐ 2.
Vở bài tập Toán 9 tập 1 phần Hình học
Tài liệu gồm 103 trang, tuyển tập các dạng bài tập trắc nghiệm và tự luận môn Toán 9 tập 1 phần Hình học. CHƯƠNG 1 . HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG. Bài 1. MỘT SỐ HỆ THỨC VỀ CẠNH VÀ ĐƯỜNG CAO TRONG TAM GIÁC VUÔNG. Dạng 1: Tính độ dài đoạn thẳng và các yếu tố khác dựa vào hệ thức liên hệ giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền. Dạng 2: Tính độ dài dựa vào hệ thức liên quan đến đường cao. Dạng 3: Chứng minh các hệ thức hình học. Bài 2. TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN. Dạng 1: Tính tỉ số lượng giác của góc nhọn trong tam giác vuông khi biết độ dài hai cạnh. Dạng 2: Dựng góc nhọn α khi biết tỉ số lượng giác của góc nhọn đó bằng m/n. Dạng 3: Chứng minh hệ thức lượng giác. Dạng 4: Biết một giá trị lượng giác của góc nhọn, tính các tỉ số lượng giác khác của góc đó. Dạng 5: Tính giá trị lượng giác với các góc đặc biệt (không dùng máy tính hoặc bảng số). Dạng 6: So sánh các tỉ số lượng giác mà không dùng máy tính hoặc bảng số. Dạng 7: Tìm góc nhọn α thỏa đẳng thức cho trước. Bài 4-5. MỘT SỐ HỆ THỨC VỀ CẠNH VÀ GÓC TRONG TAM GIÁC VUÔNG ỨNG DỤNG THỰC TẾ CÁC TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN. Dạng 1: Giải tam giác vuông. Dạng 2: Giải tam giác nhọn. Dạng 3: Tính diện tích tam giác, tứ giác. Dạng 4: Ứng dụng thực tế của hệ thức lượng trong tam giác vuông. Bài. ÔN TẬP CHƯƠNG I. Dạng 1: So sánh các tỉ số lượng giác. Dạng 2: Rút gọn và tính giá trị của biểu thức lượng giác. Dạng 3: Tính độ dài đoạn thẳng, tính số đo góc. Dạng 4: Chứng minh hệ thức giữa các tỉ số lượng giác. CHƯƠNG 2 . ĐƯỜNG TRÒN. Bài 1. SỰ XÁC ĐỊNH CỦA ĐƯỜNG TRÒN. TÍNH CHẤT ĐỐI XỨNG CỦA ĐƯỜNG TRÒN. Dạng 1: Xác định tâm và bán kính của đường tròn đi qua nhiều điểm. Dạng 2: Xác định vị trí của điểm và đường tròn. Dạng 3: Dựng đường tròn thỏa mãn yêu cầu cho trước. Bài 2. ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRÒN. Dạng 1: So sánh các đoạn thẳng. Dạng 2: Chứng minh hai đoạn thẳng bằng nhau. Bài 3. LIÊN HỆ GIỮA DÂY VÀ KHOẢNG CÁCH TỪ TÂM ĐẾN DÂY. Dạng 1: Tính độ dài đoạn thẳng. Chứng minh đoạn thẳng bằng nhau. Dạng 2: So sánh độ dài các đoạn thẳng. Bài 4. VỊ TRÍ TƯƠNG ĐỐI CỦA ĐƯỜNG THẲNG VÀ ĐƯỜNG TRÒN. Dạng 1: Xác định vị trí tương đối của đường thẳng và đường tròn. Dạng 2: Bài toán liên quan đến tính độ dài. Bài 5. DẤU HIỆU NHẬN BIẾT TIẾP TUYẾN CỦA ĐƯỜNG TRÒN. Dạng 1: Chứng minh một đường thẳng là tiếp tuyến của đường tròn. Dạng 2: Bài toán liên quan đến tính độ dài. Bài 6. TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAU. Dạng 1: Chứng minh hai đoạn thẳng bằng nhau, hai đường thẳng song song, hai đường thẳng vuông góc. Dạng 2: Tính độ dài đoạn thẳng. Tính số đo góc. Bài 7. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN. Dạng 1: Chứng minh song song, vuông góc. Dạng 2: Tính độ dài đoạn thẳng. Chứng minh đoạn thẳng bằng nhau. Bài 8. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN (TT). Dạng 1: Xác định vị trí tương đối của hai đường tròn. Dạng 2: Các bài toán liên quan đến hai đường tròn tiếp xúc nhau. Bài. ÔN TẬP CHƯƠNG II.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6