Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Vĩnh Phúc

Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Vĩnh Phúc Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 - 2022 sở GD ĐT Vĩnh Phúc Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 - 2022 sở GD ĐT Vĩnh Phúc Chào quý thầy, cô giáo và các em học sinh! Chúng tôi xin giới thiệu đến quý vị đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Toán và chuyên Tin) năm 2021 - 2022 của sở GD&ĐT Vĩnh Phúc. Bộ đề thi này bao gồm đáp án và lời giải chi tiết để giúp các em ôn tập hiệu quả. Dưới đây là một số câu hỏi trong đề thi: 1. Cho hình thang ABCD (AD // BC, AD < BC). Các điểm E, F lần lượt thuộc các cạnh AB, CD. Đường tròn ngoại tiếp tam giác AEF cắt đường thẳng AD tại M, đường tròn ngoại tiếp tam giác CEF cắt đường thẳng BC tại điểm N. Chứng minh rằng: a) Tứ giác EFQP nội tiếp đường tròn. b) PQ song song với BC và tâm đường tròn ngoại tiếp các tam giác PQE, AMF, CEN cùng nằm trên một đường thẳng cố định. c) Các đường thẳng MN, BD, EF đồng quy tại một điểm. 2. Thầy Quyết viết các số nguyên 1, 2, 3,…., 2021, 2002 lên bảng và thực hiện việc thay số như sau: Mỗi lần thay số, thầy chọn ra hai số bất kì trên bảng, xóa hai số này đi và viết lên bảng số trung bình cộng của hai số vừa xóa. Sau 2021 lần thay số như vậy, trên bảng còn lại duy nhất một số. a) Chứng minh rằng số còn lại trên bảng có thể là số 2021. b) Chứng minh rằng số còn lại trên bảng có thể là số 2006. 3. Tìm tất cả các bộ ba số nguyên dương a, b, c sao cho a^2 + b^2 = c^2. Đề thi đầy thách thức này chắc chắn sẽ giúp các em thử sức và nâng cao kiến thức. Hãy cùng nhau ôn tập và chuẩn bị tốt nhất cho kỳ thi sắp tới nhé!

Nguồn: sytu.vn

Đăng nhập để đọc

Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Lạng Sơn
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lạng Sơn. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Lạng Sơn : + Cho phương trình bậc hai với tham số m: x2 – 2(m + 1)x + 2m – 3 = 0 (1). 1. Giải phương trình (1) khi m = 0. 2. Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt x1 và x2 với mọi m. Tìm tất cả các giá trị của m thỏa mãn: x1 + x2 – 2x1x2 = 1. + Giải các phương trình và hệ phương trình sau. + Cho đường tròn (O) đường kính AB. Dây cung MN vuông góc với AB, (AM < BM). Hai đường thẳng BM và NA cắt nhau tại K. Gọi H là chân đường vuông góc kẻ từ K đến đường thẳng AB. a. Chứng minh rằng tứ giác AHKM nội tiếp trong một đường tròn. b. Chứng minh rằng NB.HK = AN.HB. c. Chứng minh HM là tiếp tuyến của đường tròn (O).
Đề vào lớp 10 môn Toán (chuyên) 2022 - 2023 trường chuyên Nguyễn Trãi - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Nguyễn Trãi, tỉnh Hải Dương. Trích dẫn đề vào lớp 10 môn Toán (chuyên) 2022 – 2023 trường chuyên Nguyễn Trãi – Hải Dương : + Cho đa thức P(x) với các hệ số nguyên thỏa mãn P(2021).P(2022) = 2023. Chứng minh rằng biểu thức P(x) – 2024 không có nghiệm nguyên. + Cho đường tròn (O) và dây cung AB không đi qua tâm O. Gọi M là điểm chính giữa của cung nhỏ AB; D là một điểm thay đổi trên cung lớn AB (D khác A và B); DM cắt AB tại C. a. Chứng minh rằng MB.BD = MD.BC; b. Chứng minh rằng MB là tiếp tuyến của đường tròn ngoại tiếp tam giác BCD và khi điểm D thay đổi thì tâm đường tròn ngoại tiếp tam giác BCD nằm trên một đường thẳng cố định. + Cho hình thoi ABCD có AB = 2. Gọi R1 và R2 lần lượt là bán kính đường tròn ngoại tiếp các giác ABC và ABD. Chứng minh rằng R1 + R2 >= 2.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT An Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT An Giang : + Cho phương trình bậc hai x2 + 2(m + 1)x + 2m + 1 = 0 (m là tham số). a. Tìm m để phương trình có một nghiệm bằng -3, tìm nghiệm còn lại. b. Với giá trị nào của m thì phương trình đã cho có hai nghiệm x1 và x2 thỏa mãn x12 + x22 = 2. + Cho tam giác ABC có ba góc nhọn, các đường cao AE, BF và CN cắt nhau tại H (E thuộc BC, F thuộc AC, N thuộc AB). a. Chứng minh tứ giác CEHF nội tiếp. b. Kéo dài FE cắt đường tròn đường kính BC tại M. Chứng minh BM = BN. c. Biết AH = BC. Tính số đo góc A của tam giác ABC. + Một chiếc đu quay có bán kính 75 m, tâm của vòng quay ở độ cao 80 m so với mặt đất. Thời gian thực hiện mỗi vòng quay của đu quay là 30 phút. Nếu một người vào cabin ở vị trí thấp nhất của đu quay thì sau 10 phút người đó ở độ cao bao nhiêu mét so với mặt đất (giả sử đu quay quay đều)?
Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2022 - 2023 sở GDĐT Tây Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (không chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Tây Ninh; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2022 – 2023 sở GD&ĐT Tây Ninh : + Căn cứ diễn biến mực nước hồ Dầu Tiếng và tình hình khí tượng thủy văn trên lưu vực, để chủ động phòng chống lũ cho công trình và khu vực hạ du, Công ty khai thác thủy lợi hồ Dầu Tiếng dự định xả một lượng nước ở hồ với lưu lượng 15 triệu 3 m trong một ngày. Do tình hình thời tiết có chiều hướng xấu Công ty đã quyết định điều chỉnh lưu lượng xả lên 20 triệu 3 m mỗi ngày nên đã hoàn thành công việc sớm hơn thời gian dự kiến 2 ngày. Hỏi Công ty đã xả bao nhiêu 3 m nước? + Cho tam giác ABC có ba góc nhọn và BAC 60 nội tiếp trong đường tròn (O). Trên đoạn thẳng OA lấy điểm I (IA IO) đường thẳng qua I vuông góc OA cắt các cạnh AB, AC lần lượt tại M và N. Chứng minh tứ giác BCNM nội tiếp. + Cho đường tròn (O) có đường kính AB 2 2022. Lấy điểm C trên (O) sao cho AC BC. Gọi H là hình chiếu vuông góc của C trên AB (H khác A). Kẻ HK vuông góc BC tại K. Tính 2 2 HK OK.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6