Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán về căn bậc hai và căn bậc ba

Tài liệu gồm 44 trang, phân loại và hướng dẫn giải các dạng toán về căn bậc hai và căn bậc ba, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 (tập 1) phần Đại số chương 1. VẤN ĐỀ 1. CĂN BẬC HAI. A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 1. Tìm căn bậc hai và căn bậc hai số học của một số. Dạng 2. So sánh các căn bậc hai số học. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 2. CĂN THỨC BẬC HAI VÀ HẰNG ĐẲNG THỨC √A^2 = |A| (PHẦN 1). A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 1. Tính giá trị của biểu thức chứa căn bậc hai. Dạng 2. Rút gọn biểu thức chứa căn bậc hai. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 3. CĂN THỨC BẬC HAI VÀ HẰNG ĐẲNG THỨC √A^2 = |A| (PHẦN 2). A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 3. Tìm điều kiện để biểu thức chứa căn bậc hai có nghĩa. Dạng 4. Giải phương trình chứa căn bậc hai. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 4. LIÊN HỆ PHÉP NHÂN, PHÉP CHIA VỚI PHÉP KHAI PHƯƠNG (PHẦN 1). A. Tóm tắt lý thuyết. B. Bài tập và các dạng toán. Dạng 1. Thực hiện phép tính. Dạng 2. Rút gọn biểu thức. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 5. LIÊN HỆ PHÉP NHÂN, PHÉP CHIA VỚI PHÉP KHAI PHƯƠNG (PHẦN 2). A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 4. Rút gọn biểu thức. Dạng 5. Giải phương trình. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 6. BIẾN ĐỔI ĐƠN GIẢN BIỂU THỨC CHỨA CĂN BẬC HAI. A. TÓM TẮT LÍ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 1. Đưa thừa số ra ngoài dấu căn hoặc vào trong dấu căn. Dạng 2. So sánh các căn bậc hai. Dạng 3. Rút gọn biểu thức chứa căn bậc hai. Dạng 4. Trục căn thức ở mẫu. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 7. RÚT GỌN BIỂU THỨC CHỨA CĂN VÀ CÁC BÀI TOÁN LIÊN QUAN. A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 1. Rút gọn biểu thức chứa căn bậc hai. Dạng 2. Chứng minh đẳng thức chứa căn thức bậc hai. Dạng 3. Rút gọn biểu thức và các bài toán liên quan. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 8. CĂN BẬC BA. A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 1. Thực hiện phép tính có chứa căn bậc ba. Dạng 2. So sánh các căn bậc ba. Dạng 3. Giải phương trình chứa căn bậc ba. C. BÀI TẬP VỀ NHÀ. ÔN TẬP CHỦ ĐỀ 1 (PHẦN 1). A. TÓM TẮT LÝ THUYẾT. 1. Căn bậc hai số học. 2. Căn thức bậc hai. 3. Liên hệ giữa phép nhân, phép chia với phép khai phương. 4. Biến đổi đơn giản biểu thức chứa căn bậc hai. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 1. Tìm điều kiện cho các biểu thức có nghĩa. Dạng 2. Tính và rút gọn biểu thức. Dạng 3. Giải phương trình và bất phương trình. ÔN TẬP CHỦ ĐỀ 1 (PHẦN 2). A. TÓM TẮT LÍ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 4. Tìm các giá trị nguyên của biến để các biểu thức cho trước có giá trị nguyên. Dạng 5. Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của biểu thức. Dạng 6. Rút gọn biểu thức và các bài toán liên quan. Một số bài tập nâng cao. HƯỚNG DẪN – ĐÁP SỐ. VẤN ĐỀ 1. VẤN ĐỀ 2. VẤN ĐỀ 3. VẤN ĐỀ 4. VẤN ĐỀ 5. VẤN ĐỀ 6. VẤN ĐỀ 7. VẤN ĐỀ 8. ÔN TẬP CHỦ ĐỀ 1 (PHẦN 1). ÔN TẬP CHỦ ĐỀ 1 (PHẦN 2).

Nguồn: toanmath.com

Đăng nhập để đọc

Tài liệu Toán 9 chủ đề vị trí tương đối của đường thẳng và đường tròn
Tài liệu gồm 14 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề vị trí tương đối của đường thẳng và đường tròn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Vị trí tương đối của đường thẳng và đường tròn. Gọi d là khoảng cách từ tâm O của đường tròn (O;R) đến đường thẳng a, khi đó ta có: + Hệ thức: d < R – Số điểm chung: 2 – Quan hệ: Đường thẳng a cắt đường tròn (O;R) tại 2 điểm. + Hệ thức: d = R – Số điểm chung: 1 – Quan hệ: Đường thẳng a tiếp xúc đường tròn (O;R). + Hệ thức: d > R – Số điểm chung: 0 – Quan hệ: Đường thẳng a không cắt đường tròn (O;R). 2. Định lý. Nếu một đường thẳng là tiếp tuyến của một đường tròn thì nó vuông góc với bán kính đi qua tiếp điểm. B. Bài tập và các dạng toán. Dạng 1 : Xác định vị trí tương đối của đường thẳng và đường tròn và ngược lại. Cách giải: So sánh d và R dựa vào bảng vị trí tương đối của đường thẳng và đường tròn đã nêu trong lý thuyết. Dạng 2 : Bài toán liên quan đến tính độ dài. Cách giải: Ta nối tâm với tiếp điểm để vận dụng định lý về tính chất của tiếp điểm và sử dụng định lý Pytago. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề dấu hiệu nhận biết tiếp tuyến của đường tròn
Tài liệu gồm 19 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề dấu hiệu nhận biết tiếp tuyến của đường tròn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định nghĩa: Một đường thẳng được gọi là một tiếp tuyến của đường tròn nếu nó chỉ có 1 điểm chung với đường tròn đó. 2. Các định lí: a) Định lí 1: Nếu một đường thẳng a là tiếp tuyến của một đường tròn (O;R) thì nó vuông góc với tiếp tuyến đi qua tiếp điểm. b) Định lí 2: Nếu một đường thẳng a đi qua một điểm của đường tròn (O;R) và vuông góc với bán kính đi qua điểm đó thì đường thẳng ấy là tiếp tuyến của đường tròn. 3. Các dấu hiệu nhận biết tiếp tuyến của đường tròn. a) Nếu một đường thẳng đi qua 1 điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng ấy là một tiếp tuyến của đường tròn. b) Nếu khoảng cách từ tâm đường tròn đến đường thẳng bằng bán kính của đường tròn thì đường thẳng đó là tiếp tuyến của đường tròn. c) Nếu một đường thẳng và một đường tròn chỉ có một điểm chung thì đường thẳng đó là tiếp tuyến của đường tròn. B. Bài tập áp dụng và các dạng toán. Dạng 1 : Chứng minh một đường thẳng là tiếp tuyến của một đường tròn. Cách giải: Để chứng minh đường thẳng a là tiếp tuyến của đường tròn (O;R) tại tiếp điểm C, ta có thể làm theo một trong các cách sau: Cách 1: Chứng minh C nằm trên (O) và OC vuông góc với a tại C. Cách 2: Kẻ OH vuông góc với a tại H và chứng minh OH = OC = R. Cách 3: Vẽ tiếp tuyến a’ của (O) và chứng minh a trùng với a’. Dạng 2 : Tính độ dài đoạn thẳng. Cách giải: Nối tâm với tiếp điểm để vận dụng định lý về tính chất của tiếp tuyến và sử dụng các công thức về hệ thức lượng trong tam giác vuông để tính độ dài các đoạn thẳng. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề tính chất hai tiếp tuyến cắt nhau
Tài liệu gồm 27 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề tính chất hai tiếp tuyến cắt nhau trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Tính chất của hai tiếp tuyến cắt nhau. Định lí: Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì: – Điểm đó cách đều hai tiếp điểm. – Tia kẻ từ điểm đó đi qua tâm là tia phân giác của góc tạo bởi hai tiếp tuyến. – Tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua các tiếp điểm. – Đường thẳng đi qua điểm đó và qua tâm đường tròn là đường trung trực của đoạn thẳng nối hai tiếp điểm. 2. Đường tròn nội tiếp tam giác. – Đường tròn tiếp xúc với ba cạnh của một tam giác gọi là đường tròn nội tiếp tam giác, còn tam giác gọi là ngoại tiếp đường tròn. – Tâm của đường tròn nội tiếp tam giác là giao điểm của các đường phân giác của các góc trong tam giác. 3. Đường tròn bàng tiếp tam giác. – Đường tròn tiếp xúc với 1 cạnh của tam giác và tiếp xúc với phần kéo dài của hai cạnh còn lại gọi là đường tròn bàng tiếp tam giác. – Tâm của đường tròn bàng tiếp tam giác góc A là giao điểm của hai đường phân giác các góc ngoài tại B và C hoặc là giao điểm của đường phân giác góc A và đường phân giác ngoài tại B (hoặc C). – Mỗi tam giác có ba đường tròn bàng tiếp tam giác. B. Bài tập và các dạng toán. Dạng 1 : Chứng minh hai đoạn thẳng bằng nhau, hai đường thẳng song song, hai đường thẳng vuông góc. Cách giải: Dùng tính chất của hai tiếp tuyến cắt nhau. Dạng 2 : Chứng minh tiếp tuyến, tính độ dài, tính số đo góc. Cách giải: Ta sử dụng các kiến thức sau: – Tính chất của hai tiếp tuyến cắt nhau. – Khái niệm đường tròn nội tiếp, bàng tiếp. – Hệ thức lượng về cạnh và góc trong tam giác vuông. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề vị trí tương đối của hai đường tròn
Tài liệu gồm 27 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề vị trí tương đối của hai đường tròn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Tính chất của đường nối tâm. – Đường nối tâm (Đường thẳng đi qua tâm 2 đường tròn) là trục đối xứng của hình tạo bởi hai đường tròn. Chú ý: – Nếu hai đường tròn tiếp xúc nhau thì tiếp điểm nằm trên đường nối tâm. – Nếu hai đường tròn cắt nhau thì đường nối tâm là đường trung trực của dây chung. 2. Liên hệ giữa vị trí của hai đường tròn với đoạn nối tâm d và các bán kính R r. 3. Tiếp tuyến chung của hai đường tròn. Tiếp tuyến chung của hai đường tròn là đường thẳng tiếp xúc với cả hai đường tròn đó. a) Hai đường tròn cắt nhau có hai tiếp tuyến chung ngoài. b) Hai đường tròn tiếp xúc ngoài có hai tiếp tuyến chung ngoài và một tiếp tuyến chung (hình vẽ b). c) Hai đường tròn tiếp xúc trong chỉ có một tiếp tuyến chung (hình c). d) Hai đường tròn ngoài nhau có hai tiếp tuyến chung ngoài và hai tiếp tuyến chung trong (hình vẽ d). e) Hai đường tròn chứa nhau không có tiếp tuyến chung. f) Hai đường tròn đồng tâm không có tiếp tuyến chung. B. Bài tập và các dạng toán. Dạng 1 : Các bài toán liên quan đến hai đường tròn tiếp xúc nhau. Cách giải: Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn tiếp xúc nhau ABH ANH. Dạng 2 : Các bài toán liên quan đến hai đường tròn cắt nhau. Cách giải : Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn cắt nhau. Dạng 3 : Các bài toán về hai đường tròn không cắt nhau. Cách giải: Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn không giao nhau. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6