Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng ôn tập TN THPT 2020 môn Toán Phép đếm - cấp số cộng - cấp số nhân

Tài liệu gồm 19 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm các chuyên đề: Quy tắc cộng, quy tắc nhân và hoán vị, tổ hợp, chỉnh hợp; Dãy số, cấp số cộng và cấp số nhân … có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Phép đếm – cấp số cộng – cấp số nhân: A. PHÉP ĐẾM 1. Lý thuyết. + Quy tắc nhân: Để hoàn thành công việc cần chia ra k giai đoạn → Sử dụng quy tắc nhân. + Quy tắc cộng: Để hoàn thành công việc bằng nhiều trường hợp → Sử dụng quy tắc cộng. + Hoán vị: Xếp n phần tử theo thứ tự → Sử dụng hoán vị. + Tổ hợp: Chọn k phần tử trong n phần tử tùy ý → Sử dụng tổ hợp. + Chỉnh hợp: Chọn k phần tử trong n phần tử và xếp → Sử dụng chỉnh hợp. 2. Câu hỏi và bài tập cùng mức độ đề minh họa. [ads] B. CẤP SỐ CỘNG – CẤP SỐ NHÂN 1. Lý thuyết. + Cấp số cộng: Một dãy số được gọi là cấp số cộng nếu số liền sau trừ số liền trước bằng một hằng số không thay đổi, hằng số không thay đổi đó được gọi là công sai d. + Cấp số nhân: Một dãy số được gọi là cấp số nhân nếu số liền sau chia số liền trước bằng một hằng số không thay đổi, hằng số không thay đổi đó được gọi là công bội q. 2. Câu hỏi và bài tập cùng mức độ đề minh họa.

Nguồn: toanmath.com

Đăng nhập để đọc

Các bài toán tổ hợp - xác suất hay và khó
Tài liệu gồm 91 trang, được biên soạn bởi nhóm tác giả Tạp Chí Và Tư Liệu Toán Học, tuyển chọn các bài toán tổ hợp – xác suất hay và khó, giúp học sinh học tốt chương trình Đại số và Giải tích 11 chương 2. Khái quát nội dung tài liệu các bài toán tổ hợp – xác suất hay và khó: 1. Lý thuyết cần nhớ 1.1 Xác suất có điều kiện. Xác suất có điều kiện của biến cố A với điều kiện B là một số được xác định bởi công thức P(A|B) = P(AB)/P(B) nếu P(B) > 0. 1.2 Bài toán chia kẹo của Euler. Bài toán chia kẹo của Euler là bài toán nổi tiếng trong lý thuyết tổ hợp. Với những học sinh chuyên Toán cấp ba thì đây là bài toán quen thuộc và có nhiều ứng dụng. Tài liệu trình bày một cách tiếp cận bài toán chia kẹo của Euler cho học sinh lớp 6 & 7 để thấy rằng các bài toán đếm nói riêng và các bài toán tổ hợp nói chung luôn là những bài toán mà lời giải của nó chứa đựng sự hồn nhiên và ngây thơ. 1.3 Một số kết quả của bài toán đếm có yếu tố hình học. 2. Các bài toán tổng hợp
Chuyên đề tổ hợp và xác suất - Dương Minh Hùng
Tài liệu gồm 87 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, tóm tắt lý thuyết và hướng dẫn giải các dạng bài tập chuyên đề tổ hợp và xác suất, giúp học sinh học tốt chương trình Đại số và Giải tích 11 chương 2. BÀI 1 . CÁC QUY TẮC ĐẾM. + Dạng 1: Sử dụng quy tắc cộng. + Dạng 2: Sử dụng quy tắc nhân. + Dạng 3: Sử dụng quy tắc cộng và quy tắc nhân. BÀI 2 . HOÁN VỊ – CHỈNH HỢP – TỔ HỢP. + Dạng 1: Bài toán chỉ sử dụng hoán vị hoặc tổ hợp hoặc chỉnh hợp. + Dạng 2: Bài toán kết hợp hoán vị, tổ hợp và chỉnh hợp. + Dạng 3: Bài toán liên quan đến hình học. + Dạng 4: Giải phương trình, bất phương trình, hệ phương trình, chứng minh liên quan đến hoán vị, tổ hợp, chỉnh hợp. BÀI 3 . NHỊ THỨC NEWTON. + Dạng 1: Khai triển một nhị thức Newton. + Dạng 2: Tìm hệ số, số hạng trong khai triển nhị thức Newton. + Dạng 3: Chứng minh, tính giá trị của biểu thức đại số tổ hợp có sử dụng nhị thức Newton. BÀI 4 . PHÉP THỬ VÀ BIẾN CỐ. + Dạng 1: Mô tả không gian mẫu, biến cố. + Dạng 2: Các câu hỏi lý thuyết tổng hợp. BÀI 5 . XÁC SUẤT CỦA BIẾN CỐ. + Dạng 1: Tính xác suất bằng định nghĩa. + Dạng 2: Tính xác suất bằng công thức cộng. + Dạng 3: Tính xác suất bằng công thức nhân. + Dạng 4: Bài toán kết hợp quy tắc cộng và quy tắc nhân xác suất.
Chuyên đề đẳng thức tổ hợp
Tài liệu gồm 181 trang, được biên soạn bởi các tác giả: Trần Quốc Nhật Hân, Bùi Đức Lộc, Hoàng Xuân Thanh, Lê Kim Nhã, Nguyễn Bảo Phúc, Trần Trung Kiên, Lưu Giang Nam, Hoàng Minh Quân, Nguyễn Hiền Trang … (thành viên Diễn đàn Toán học), tập hợp các bài viết liên quan đến đẳng thức tổ hợp, một dạng toán thường gặp trong các đề thi HSG môn Toán bậc THPT. Chương 1 . Tổng quan về hệ số nhị thức. 1.1 Một số khái niệm. 1.2 Các tính chất cơ bản. Chương 2 . Phương pháp cân bằng hệ số chứng minh đẳng thức tổ hợp. 2.1 Khai triển số thực. 2.2 Ứng dụng số phức. Chương 3 . Tính tổng, chứng minh đẳng thức tổ hợp (ĐTTH) bằng phương pháp sai phân từng phần. 3.1 Sai phân (Difference). 3.2 Sai phân từng phần. 3.3 Một số bài toán và ví dụ minh hoạ. 3.4 Bài tập tự luyện. [ads] Chương 4 . Sử dụng hàm sinh chứng minh đẳng thức tổ hợp. 4.1 Thay lời mở đầu. 4.2 Những biến đổi đại số thường gặp với (n k). 4.3 Những dạng khai triển hàm sinh cần biết. 4.4 Những định lý cơ bản trong tính tổng dùng hàm sinh. 4.5 Bài tập minh họa. 4.6 Các bài toán không mẫu mực. 4.7 Bài tập tự luyện. Chương 5 . Ứng dụng đẳng thức tổ hợp vào số học. 5.1 Định lý. 5.2 Một số hệ thức cơ bản. 5.3 Các bài toán. 5.4 Bài tập. Chương 6 . Kỹ thuật đếm bằng hai cách chứng minh đẳng thức tổ hợp. 6.1 Nguyên lí đếm bằng hai cách. 6.2 Ứng dụng chứng minh đẳng thức tổ hợp. 6.3 Ứng dụng phương pháp đếm giải các bài toán đồ thị. 6.4 Ứng dụng đếm hai cách giải các bài toán rời rạc. 6.5 Bài tập. Tài liệu tham khảo.
Một số chuyên đề toán tổ hợp bồi dưỡng học sinh giỏi THPT - Phạm Minh Phương
Cuốn sách gồm 180 trang, được biên soạn bởi tác giả Phạm Minh Phương (chủ biên), tuyển tập một số chuyên đề toán tổ hợp bồi dưỡng học sinh giỏi khối Trung học Phổ thông. CHUYÊN ĐỀ 1 . TẬP HỢP. 1.1 Các khái niệm cơ bản. 1.1.1 Khái niệm tập hợp. 1.1.2 Các cách xác định tập hợp. 1.1.3 Tập con. 1.1.4 Tập hợp bằng nhau. 1.1.5 Giao của hai tập hợp. 1.1.6 Hợp của hai tập hợp. 1.1.7 Hiệu của hai tập hợp. 1.1.8 Phần bù của hai tập hợp. 1.1.9 Tích Đề-các. 1.1.10 Một số tính chất. 1.2 Bài tập. 1.2.1 Bài tập luyện tập. 1.2.2 Bài tập tự giải. 1.3 Hướng dẫn giải bài tập. CHUYÊN ĐỀ 2 . PHÉP ĐẾM. 2.1 Các nguyên lí cơ bản. 2.2 Tổ hợp – chỉnh hợp – hoán vị. 2.3 Bài tập. 2.3.1 Bài tập luyện tập. 2.3.2 Bài tập tự giải. 2.4 Hướng dẫn giải bài tập. CHUYÊN ĐỀ 3 . NHỊ THỨC NEWTON. 3.1 Bài tập. 3.1.1 Bài tập luyện tập. 3.1.2 Bài tập tự giải. 3.2 Hướng dẫn giải bài tập. CHUYÊN ĐỀ 4 . NGUYÊN TẮC DIRICHLET. 4.1 Nội dung nguyên tắc Dirichlet. 4.2 Bài tập. 4.2.1 Bài tập luyện tập. 4.2.2 Bài tập tự giải. 4.3 Hướng dẫn giải bài tập. CHUYÊN ĐỀ 5 . NGUYÊN TẮC CỰC HẠN. 5.1 Nguyên tắc cực hạn. 5.2 Bài tập. 5.2.1 Bài tập luyện tập. 5.2.2 Bài tập tự giải. 5.3 Hướng dẫn giải bài tập [ads] CHUYÊN ĐỀ 6 . BẤT BIẾN. 6.1 Thuật toán. 6.1.1 Định nghĩa thuật toán. 6.1.2 Các bài toán về thuật toán. 6.1.3 Hàm bất biến. 6.2 Bài tập. 6.2.1 Bài tập luyện tập. 6.2.2 Bài tập tự giải. 6.3 Hướng dẫn giải bài tập. CHUYÊN ĐỀ 7 . ĐƠN BIẾN VÀ BÀI TOÁN HỘI TỤ. 7.1 Hàm đơn biến. 7.2 Bài toán hội tụ và bài toán phân kì. 7.3 Bài tập. 7.3.1 Bài tập luyện tập. 7.3.2 Bài tập tự giải. 7.4 Hướng dẫn giải bài tập. CHUYÊN ĐỀ 8 . MỘT SỐ PHƯƠNG PHÁP ĐẾM NÂNG CAO. 8.1 Phương pháp truy hồi. 8.2 Phương pháp sử dụng song ánh. 8.3 Phương pháp quỹ đạo. 8.4 Phương pháp sử dụng đa thức và số phức. 8.5 Bài tập. 8.5.1 Bài tập luyện tập. 8.5.2 Bài tập tự giải. 8.6 Hướng dẫn giải bài tập. CHUYÊN ĐỀ 9 . HÀM SINH VÀ TỔ HỢP. 9.1 Khái niệm hàm sinh. 9.2 Khai triển Taylor. 9.3 Hệ số nhị thức mở rộng. 9.4 Ứng dụng của hàm sinh. 9.5 Bài tập. 9.5.1 Bài tập luyện tập. 9.5.2 Bài tập tự giải. 9.6 Hướng dẫn giải bài tập. CHUYÊN ĐỀ 10 . HÌNH LỒI VÀ ĐỊNH LÍ HELLY. 10.1 Hình lồi. 10.2 Định lí Helly. 10.3 Bài tập. 10.3.1 Bài tập luyện tập. 10.3.2 Bài tập tự giải. 10.4 Hướng dẫn giải bài tập. Bài tập tổng hợp. Tài liệu tham khảo.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6