Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chinh phục bất đẳng thức bằng phương pháp hệ số bất định và phương pháp tiếp tuyến - Nguyễn Tiến Chinh

Tài liệu chinh phục bất đẳng thức trong kì thi Quốc gia của thầy Nguyễn Tiến Chinh trình bày 2 phương pháp chứng minh bất đẳng thức thường dùng: 1. Kỹ thuật đánh giá từng biến bằng hệ số bất định 2. Kỹ thuật chứng minh bất đẳng thức – tìm min – max bằng phương pháp tiếp tuyến Mỗi phương pháp đều trình bày cơ sở lí thuyết và các ví dụ mẫu có phần giải chi tiết. Các bài giải có sự vận dụng máy tính Casio để định hướng và tăng tốc độ giải bài. Tài liệu gồm 30 trang. [ads]

Nguồn: toanmath.com

Đăng nhập để đọc

Áp dụng bất đẳng thức Bunhiacopxki chứng minh bất đẳng thức, tìm GTLN GTNN
Tài liệu gồm 84 trang, được trích từ cuốn sách Những Kỹ Năng Giải Toán Đặc Sắc Bất Đẳng Thức của các tác giả: Nguyễn Công Lợi, Đào Quốc Chung, Đào Quốc Dũng, Phạm Kim Chung (diễn đàn Toán THPT K2PI), hướng dẫn áp dụng bất đẳng thức Bunhiacopxki (tên gọi chính xác là bất đẳng thức Cauchy – Bunhiacopxki – Schwarz) chứng minh bất đẳng thức, tìm GTLN – GTNN (giá trị lớn nhất – giá trị nhỏ nhất). Khái quát nội dung tài liệu áp dụng bất đẳng thức Bunhiacopxki chứng minh bất đẳng thức, tìm GTLN – GTNN: A. KIẾN THỨC CẦN NHỚ 1. Giới thiệu bất đẳng thức Bunhiacopxki. 2. Các dạng biểu diễn của bất đẳng thức Bunhiacopxki. B. MỘT SỐ KỸ THUẬT SỬ DỤNG BẤT ĐẲNG THỨC BUNHIACOPXKI 1. Kỹ thuật chọn điểm rơi. Cũng tương tự như bất đẳng thức Cauchy, khi sử dụng bất đẳng thức Bunhiacopxki để chứng minh bất đẳng thức ta cần phải bảo toàn được dấu đẳng thức xẩy ra, điều này có nghĩa là ta cần phải xác định được điểm rơi của bài toán khi áp dụng bất đẳng thức Bunhiacopxki. 2. Kỹ thuật sử dụng bất đẳng thức Bunhiacopxki dạng cơ bản. Bất đẳng thức Bunhiacopxki dạng cơ bản là những bất đẳng thức đánh giá từ đại lượng (a1b1 + a2b2 + … + anbn)^2 về đại lượng (a1^2 + a2^2 + … + an^2)(b1^2 + b2^2 + … + bn^2) hoặc ngược lại. [ads] 3. Kỹ thuật sử dụng bất đẳng thức Bunhiacopxki dạng phân thức. Bất đẳng thức Bunhiacopxki dạng phân thức là bất đẳng thức có ứng dụng rộng rãi trong chứng minh các bài toán bất đẳng thức. Nó giải quyết được một lớp các bất đẳng thức chứa các đại lượng có dạng phân thức. 4. Kỹ thuật thêm bớt. Có những bất đẳng thức (hay biểu thức cần tìm GTLN, GTNN) nếu để nguyên dạng như đề bài cho đôi khi khó hoặc thậm chí không thể giải quyết bằng cách áp dụng bất đẳng thức Bunhiacopxki. Khi đó ta chịu khó biến đổi một số biểu thức bằng cách thêm bớt các số hay biểu thức phù hợp ta có thể vận dụng bất đẳng thức Bunhiacopxki một cách dễ dàng hơn. 5. Kỹ thuật đổi biến trong bất đẳng thức Bunhiacopxki. Có một số bất đẳng thức, nếu ta để nguyên dạng phát biểu của nó thì rất khó để phát hiện ra cách chứng minh. Tuy nhiên bằng một số phép đổi biến nho nhỏ ta có thể đưa chúng về dạng quan thuộc mà bất đẳng thức Bunhiacopxki có thể áp dụng được.
Áp dụng bất đẳng thức Cô-si chứng minh bất đẳng thức, tìm GTLN - GTNN
Tài liệu gồm 91 trang, được trích từ cuốn sách Những Kỹ Năng Giải Toán Đặc Sắc Bất Đẳng Thức của các tác giả: Nguyễn Công Lợi, Đào Quốc Chung, Đào Quốc Dũng, Phạm Kim Chung (diễn đàn Toán THPT K2PI), hướng dẫn áp dụng bất đẳng thức Cô-si (BĐT Cauchy, BĐT AM – GM, BĐT giữa trung bình cộng và trung bình nhân) chứng minh bất đẳng thức, tìm GTLN – GTNN (giá trị lớn nhất – giá trị nhỏ nhất). Khái quát nội dung tài liệu áp dụng bất đẳng thức Cô-si chứng minh bất đẳng thức, tìm GTLN – GTNN: A. KIẾN THỨC CẦN NHỚ 1. Giới thiệu bất đẳng thức Cauchy(Côsi). 2. Các dạng biểu diễn của bất đẳng thức Cauchy. B. MỘT SỐ KỸ THUẬT SỬ DỤNG BẤT ĐẲNG THỨC CAUCHY 1. Kỹ thuật chọn điểm rơi trong đánh giá từ trung bình cộng sang trung bình nhân. Đánh giá từ trung bình cộng sang trung bình nhân thực chất đánh giá bất đẳng thức Cauchy theo chiều từ phía trái sang phía phải. 2. Kỹ thuật chọn điểm rơi trong đánh giá từ trung bình nhân sang trung bình cộng. Đánh giá từ trung bình nhân sang trung bình cộng chính là đánh giá bất đẳng thức Cauchy theo chiều từ phía phải sang phía trái. Trong chuỗi đánh giá đó ta cũng cần phải bảo toàn dấu đẳng thức xảy ra. 3. Kỹ thuật ghép cặp trong bất đẳng thức Cauchy. Trong nhiều bài toán mà biểu thức ở hai vế tương đối phức tạp, việc chứng minh trực tiếp trở nên khó khăn thì ta có thể sử dụng kỹ thuật “Ghép cặp” để bài toán trở nên đơn giản. [ads] 4. Kỹ thuật thêm bớt. Nếu ở các kỹ thuật trên, ta được rèn luyện thói quen định hướng dựa vào bề ngoài của một bài toán. Thì từ đây ta bắt đầu gặp những lớp bất đẳng thức phong phú hơn – những bất đẳng thức mà lời giải cho chúng luôn đòi hỏi một tầm nhìn bao quát cũng như sự đột phá ý tưởng. Kỹ thuật thêm bớt là một minh chứng rõ ràng nhất cho lối tư duy sử dụng những “yếu tố bên ngoài” trong việc giải quyết vấn đề. 5. Kỹ thuật Cauchy ngược dấu. Trong quá trình tìm lời giải cho một bài toán bất đẳng thức, một sai lầm thường gặp đó là sau một loạt các đánh giá ta thu được một bất đẳng thức ngược chiều. Điều này làm không ít người cảm thấy nản lòng. Lúc này nếu ta bình tĩnh suy nghĩ một chút thì thấy với đánh giá ngược chiều bằng cách nào đó ta thêm vào trước một dấu âm thì lập tức đánh giá đó sẽ cùng chiều. Sử dụng ý tưởng tương tự như kỹ thuật thêm bớt, thậm chí có phần khéo léo hơn, kỹ thuật Cauchy ngược dấu đã chứng tỏ sự đột phá đơn giản nhưng đem lại hiệu quả bất ngờ đến ngạc nhiên khi giải quyết lớp bất đẳng thức hoán vị chặt và khó. 6. Kỹ thuật đổi biến số. Trong bất đẳng thức, có một quy luật chung, đó là “Trong một dạng cụ thể, thì những bất đẳng thức càng nhiều biến càng khó”. Điều này cũng đồng nghĩa với việc khẳng định “Bài toán sẽ trở nên đơn giản hơn nếu ta đưa được một bất đẳng thức nhiều biến về dạng ít biến hơn”. Kỹ thuật đổi biến chính là một công cụ hữu ích để thực hiện ý tưởng này.
Các dạng toán trắc nghiệm bất đẳng thức và bất phương trình
Tài liệu gồm 147 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm bất đẳng thức và bất phương trình thường gặp trong chương trình Đại số 10 chương 4, các bài toán được phân dạng, có đáp án và lời giải chi tiết. Khái quát nội dung tài liệu các dạng toán trắc nghiệm bất đẳng thức và bất phương trình: Chủ đề 1 . Bất đẳng thức. Dạng 1. Tính chất của bất đẳng thức. Dạng 2. Bất đẳng thức Cosi và ứng dụng. Chủ đề 2 . Bất phương trình và hệ bất phương trình. Dạng 1. Tìm điều kiện xác định của bất phương trình. Dạng 2. Bất phương trình và hệ bất phương trình tương đương. Dạng 3. Sử dụng các phép biến đổi tương đương để giải bất phương trình một ẩn. Dạng 4. Sử dụng các phép biến đổi tương đương giải hệ bất phương trình một ẩn. Dạng 5. Bất phương trình, hệ bất phương trình chứa tham số. Chủ đề 3 . Dấu nhị thức bậc nhất. Dạng 1. Dấu nhị thức bậc nhất. Dạng 2. Giải bất phương trình tích. Dạng 3. Giải bất phương trình chứa ẩn ở mẫu. Dạng 4. Giải bất phương trình chứa dấu giá trị tuyệt đối. [ads] Chủ đề 4 . Hệ bất phương trình bậc nhất hai ẩn. Dạng 1. Tìm nghiệm bất phương trình bậc nhất hai ẩn. Dạng 2. Tìm miền nghiệm của hệ bất phương trình bậc nhất hai ẩn. Dạng 3. Tìm giá trị nhỏ nhất và giá trị lớn nhất. Dạng 4. Áp dụng giải bài toán thực tế. Chủ đề 5 . Dấu tam thức bậc hai. Dạng 1. Tam thức bậc hai. + Xét dấu tam thức bậc hai. + Giải bất phương trình bậc hai và một số bài toán liên quan. Dạng 2. Bất phương trình tích. Dạng 3. Bất phương trình chứa ẩn ở mẫu. Dạng 4. Hệ bất phương trình bậc hai và các bài toán liên quan. Dạng 5. Bài toán chứa tham số. + Tìm m để phương trình có n nghiệm. + Tìm m để phương trình bậc 2 có nghiệm thỏa mãn điều kiện cho trước. + Tìm m để bất phương trình thỏa mãn điều kiện cho trước. + Tìm m để hệ bất phương trình bậc hai thỏa mãn điều kiện cho trước. Dạng 6. Bất phương trình chứa dấu giá trị tuyệt đối và một số bài toán liên quan. Dạng 7. Bất phương trình chứa căn và một số bài toán liên quan.
Tài liệu tự học bất đẳng thức và bất phương trình - Trần Quốc Nghĩa
Nhằm giúp các em học sinh khối lớp 10 học tốt chương trình Đại số 10 chương 4, giới thiệu đến các em tài liệu tự học bất đẳng thức và bất phương trình do thầy Trần Quốc Nghĩa biên soạn. Tài liệu gồm 108 trang với đầy đủ lý thuyết, dạng toán và bài tập các chủ đề: bất đẳng thức, GTLN – GTNN (min – max), dấu của nhị thức bậc nhất, dấu của tam thức bậc hai, bất phương trình, hệ bất phương trình. Khái quát nội dung tài liệu tự học bất đẳng thức và bất phương trình – Trần Quốc Nghĩa: PHẦN 1 . BẤT ĐẲNG THỨC CHỦ ĐỀ 1 . BẤT ĐẲNG THỨC + Dạng 1. Chứng minh bất đẳng thức dựa vào định nghĩa và tính chất. + Dạng 2. Chứng minh bất đẳng thức dựa vào bất đẳng thức Cauchy (AM – GM). + Dạng 3. Chứng minh bất đẳng thức dựa vào bất đẳng thức Cauchy – Schwarz. + Dạng 4. Chứng minh bất đẳng thức dựa vào bất đẳng thức C.B.S. + Dạng 5. Chứng minh bất đẳng thức dựa vào tọa độ vectơ. + Dạng 6. Bất đẳng thức về giá trị tuyệt đối. + Dạng 7. Sử dụng phương pháp làm trội. + Dạng 8. Ứng dụng bất đẳng thức để giải phương trình, hệ phương trình, bất phương trình. BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 1 CHỦ ĐỀ 2 . GIÁ TRỊ LỚN NHẤT – GIÁ TRỊ NHỎ NHẤT + Dạng 1. Dùng tam thức bậc hai. + Dạng 2. Dùng bất đẳng thức Cauchy. + Dạng 3. Dùng bất đẳng thức C.B.S. + Dạng 4. Dùng bất đẳng thức chứa dấu giá trị tuyệt đối. + Dạng 5. Dùng tọa độ vectơ. BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 2 PHẦN 2 . BẤT PHƯƠNG TRÌNH VÀ HỆ BẤT PHƯƠNG TRÌNH CHỦ ĐỀ 3 . BẤT PHƯƠNG TRÌNH HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN + Dạng 1. Tìm điều kiện xác định của bất phương trình. + Dạng 2. Bất phương trình tương đương. + Dạng 3. Giải bất phương trình bậc nhất một ẩn. + Dạng 4. Giải hệ bất phương trình bậc nhất một ẩn. + Dạng 5. Bất phương trình, hệ bất phương trình bậc nhất một ẩn chứa tham số. BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 3 CHỦ ĐỀ 4 . DẤU CỦA NHỊ THỨC BẬC NHẤT BẤT PHƯƠNG TRÌNH QUI VỀ BẤT PHƯƠNG TRÌNH BẬC 1 MỘT ẨN + Dạng 1. Xét dấu biểu thức. + Dạng 2. Giải bất phương trình tích. + Dạng 3. Giải bất phương có ẩn ở mẫu. + Dạng 4. Dấu nhị thức trên một miền. + Dạng 5. Giải phương trình, bất phương trình chứa dấu giá trị tuyệt đối. BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 4 CHỦ ĐỀ 5 . BẤT PHƯƠNG TRÌNH HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN + Dạng 1. Bất phương trình bậc nhất hai ẩn. + Dạng 2. Hệ bất phương trình bậc nhất hai ẩn. + Dạng 3. Một ví dụ áp dụng vào kinh tế. BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 5 CHỦ ĐỀ 6 . DẤU CỦA TAM THỨC BẬC HAI BẤT PHƯƠNG TRÌNH BẬC HAI + Dạng 1. Xét dấu biểu thức. + Dạng 2. Giải bất phương trình bậc hai. + Dạng 3. Giải bất phương trình tích, thương. + Dạng 4. Giải hệ bất phương bậc hai. + Dạng 5. Phương trình và bất phương trình chứa dấu giá trị tuyệt đối. + Dạng 6. Phương trình và bất phương trình chứa căn thức. + Dạng 7. Bài toán chứa tham số trong phương trình và bất phương trình. BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 6 PHẦN 3 . TRÍCH ĐỀ THI ĐẠI HỌC – CAO ĐẲNG + Bất đẳng thức. + Bất phương trình có chứa giá trị tuyệt đối. + Bất phương trình có chứa căn thức.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6