Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lũy thừa, mũ và logarit trong các đề thi thử THPTQG môn Toán

Tài liệu gồm 1313 trang được sưu tầm và biên soạn bởi thầy giáo Th.S Nguyễn Chín Em, tuyển tập các câu hỏi và bài tập trắc nghiệm chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit có đáp án và lời giải chi tiết trong các đề thi thử THPT Quốc gia môn Toán những năm gần đây; giúp các em học sinh khối 12 học tốt chương trình Giải tích 12 chương 2 (Hàm số lũy thừa, hàm số mũ và hàm số logarit) và ôn thi THPT Quốc gia môn Toán. Nội dung tài liệu được chia thành 5 phần dựa theo độ khó của các câu hỏi và bài tập: + Phần 1. Mức độ nhận biết (Trang 3). + Phần 2. Mức độ thông hiểu (Trang 73). + Phần 3. Mức độ vận dụng thấp (Trang 245). + Phần 4. Mức độ vận dụng cao (Trang 340). + Phần 5. Các bài toán vận dụng thực tế (Trang 386). [ads] Trích dẫn tài liệu lũy thừa, mũ và logarit trong các đề thi thử THPTQG môn Toán: + Cho các mệnh đề sau: (I). Cơ số của lôgarit phải là số dương. (II). Chỉ số số thực dương mới có lôgarit. (III). ln(A + B) = ln A + ln B với mọi A > 0, B > 0. (IV). loga b · logb c · logc a = 1 với mọi a, b, c ∈ R. Số mệnh đề đúng là? + Lũy thừa với số mũ hữu tỉ thì cơ số phải thỏa mãn điều kiện nào sau đây? A. Cơ số phải là số thực khác 0. B. Cơ số phải là số nguyên . C. Cơ số phải là số thực tùy ý. D. Cơ số phải là số thực dương. + Để giải phương trình 2^x.(3x^2 − 2) = 2x bạn Việt tiến hành giải bốn bước sau: Bước 1. Ta nhận thấy phương trình không có nghiệm x = 0 nên phương trình tương đương (3x^2 − 2)/2x = (1/2)^x. Bước 2. Ta nhận thấy phương trình có nghiệm x = 1. Bước 3. Ta có vế phải y = (1/2)^x là hàm số nghịch biến trên R (vì cơ số 1/2 < 1); vế trái y = (3x^2 − 2)/2x có y’ = 3/2 + 1/x^2 > 0, ∀x khác 0 nên vế trái là hàm số đồng biến trên các khoảng (−∞; 0) và (0; +∞). Bước 4. Do đó phương trình có nghiệm duy nhất x = 1. Khẳng định nào sau đây đúng? A. Bạn Việt giải hoàn toàn đúng. B. Bạn Việt giải sai từ bước 2. C. Bạn Việt giải sai từ bước 3. D. Bạn Việt giải sai từ bước 4. + Cho phương trình m ln2 (x + 1) − (x + 2 − m) ln(x + 1) − x − 2 = 0 (1). Tập tất cả giá trị của tham số m để phương trình (1) có các nghiệm, trong đó có hai nghiệm phân biệt thỏa mãn 0 < x1 < 2 < 4 < x2 là khoảng (a; +∞). Khi đó, a thuộc khoảng? + Cho các số thực a, b, c không âm thoả mãn 2a + 4b + 8c = 4. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức S = a + 2b + 3c. Giá trị của biểu thức 4M + logM m bằng?

Nguồn: toanmath.com

Đăng nhập để đọc

Chuyên đề hàm số Mũ và Logarit - Bùi Quỹ
Chuyên đề hàm số Mũ và Logarit – Bùi Quỹ
Hàm số lũy thừa - mũ và logarit -Trần Sĩ Tùng
Hàm số lũy thừa – mũ và logarit -Trần Sĩ Tùng
Một số bài toán phương trình logarit khác cơ số - Huỳnh Đức Khánh - Đại học Quy Nhơn
Phương trình logarit với cơ số khác nhau luôn là vấn đề gây khó dễ cho học sinh khi gặp phải trong các đề thi. Học sinh thường lúng túng khi biến đổi, gặp khó khăn để đưa về cùng cơ số hoặc đưa về các phương trình cơ bản. Tôi viết tài liệu xin đóng góp vài bài mẫu về vấn đề này, bao gồm các phương pháp: + Đổi cơ số + Đặt ẩn phụ để đưa về phương trình mũ + Biến đổi tương đương + Đánh giá hai vế
Một số phương pháp giải phương trình mũ và logarit - THPT chuyên Quảng Bình
Một số phương pháp giải phương trình mũ và logarit – THPT chuyên Quảng Bình

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6