Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bình Phước
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bình Phước Bản PDF -
Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bình Phước Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bình Phước
Sytu xin gửi đến thầy cô và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&DĐT Bình Phước. Đề thi bao gồm đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm, sẽ diễn ra vào ngày 09 tháng 06 năm 2021.
Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&DĐT Bình Phước:
+ Cho phương trình: \(2x^2 - mx + m^3 - 8m + 5 = 0\) với m là tham số.
a) Tìm m để phương trình có 2 nghiệm trái dấu.
b) Tìm m để phương trình có 2 nghiệm phân biệt thỏa mãn điều kiện: \(2x^2 + x - 1 = 0\).
+ Cho tam giác nhọn ABC, AB AC nội tiếp đường tròn O, D là điểm chính giữa trên cung nhỏ BC của đường tròn O, H là chân đường cao từ A của tam giác ABC. Hai điểm K L lần lượt là hình chiếu vuông góc của H lên AB và AC.
a) Chứng minh AL CB AB KL.
b) Lấy điểm E trên đoạn thẳng AD sao cho BD DE. Chứng minh E là tâm đường tròn nội tiếp tam giác ABC.
c) Đường thẳng KL cắt đường tròn O tại hai điểm M N (K nằm giữa M L). Chứng minh AM AN AH.
+ Cho hai số tự nhiên a b thỏa mãn \(a^2 + b^2 = 32\). Chứng minh rằng \(a^2b^2\) là số chính phương.
Mọi chi tiết xin vui lòng xem trong file Word đính kèm.